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Figure 1. Log relative overestimation piotted against the number of bits (log,(¥/p)
against m log, n). p = compound probabilities; m = number of stages; n = number of

alternatives.

Our interpretation is supported by similar experiments with subjects
aged 9+ and 10+ years, in which, apart from gross relative overestimation
of ¥, no trends are discernible with variations in the values of m and n.
This too suggests that the multiplicative element is not primitive.

The method we have used involves an indirect evaluation of ¥. A more
direct evaluation could be obtained by asking the subject to choose
between different types of array. The utility of the choice, however, might
then become an important factor.

This experiment elucidates the apparent tendency, in a variety of
multi-stage choice situations, for the decision maker to misjudge the
likelihood of his success, and therefore to adopt an inappropriate strategy
which he will later regret.

Of historical interest in this connection is the fact that the most subtle
thinkers of ancient Greece, though greatly intrigued by the idea of the
possible, especially in Stoic philosophy, never grasped combinatorial
analysis, which had to wait until the sixteenth century for its develop-
ment. Aristotle himself evidently had only a small appreciation of the
concept of probability. Whatever intuition of the subject he and others
might have had was submerged by long established habits of thought.

The relative overestimation of compound probabilities which the exper-
iment has revealed may be a phenomenon of considerable generality in
decision and choice. If so, it merits a special designation. We propose to
name it the “inertial ¥ effect.”

25. Conservatism in human information
processing

Ward Edwards
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way of writing it is as follows. If P(H,| D) is the posterior Ecv.mg._:% :.::
hypothesis A has after datum D has been observed, P(H,) is .:.w prior
probability before datum D is observed, P(D|H,) mm..ra Eocmc::.v‘. :SM
datum D will be observed if H, is true, and P(D) is the unconditiona
probability of datum D, then

P(D|H,) P(H,)
P(D)

1)
P(HA|D) = (
P(D) is best thought of as a normalizing constant, ::..w:n_mm to make ﬂm
posterior probabilities add up to one over the exhaustive set o.m mutually
exclusive hypotheses being considered. If it must be calculated, it can be as
follows:

P(D) = Y P(D|H)P(H,)

But more often P(D) is eliminated rather than n\m_n:_mﬁmn. Oﬁm n0d<m:nﬁ:m
way of eliminating it is to transform Bayes’s :.:wom.m-: into ___8 0 _m.
likelihood ratio form. Consider another hypothesis, Hy, 5.::5 W exclu
sive of H,, and modify your opinion about it on the basis of the same
datum that changed your opinion about H,. Bayes’s theorem says

P(D|Hy) P(Hy)
P(D)

2
P(lg|D) = )

Now divide Equation 1 by Equation 2; the result is

P(H,|D) P(DIHa) P(H)
P(Hg|D) P(D{Hy) P(Hp)

or
Q @)

where {, is the posterior odds in favor of H, c<.mn i? Q is :.:w M:E.%MMW
and L is a quantity familiar to statisticians as a :rm_&oo& .B:oﬂ. @:Qm A_v:m:
is as appropriate a version of Bayes’s nrmcnm_:. as mb:.m:cﬂ L, m::<o o
considerably more useful especially for experiments involving y
1CWMMMMW= statisticians argue that Bayes’s ::mozw_d is a formally wn:Emm
rule about how to revise opinions in the light of mSQm:nm.\ :.:: nmuimm—o: o
opinion in the light of evidence is exactly what statistical in m—.m:nm
consists of, and that therefore statistical :;m:w:n.m should be m:JQc._.m_
around Bayes’s theorem - with many mc:mma.:.mi Q_ﬁmﬂm:n.mm ?,03 mﬁmmw_man
statistical practice. For an elementary mx_ucm::.y: of these _ava wri %Mmuv
experimenting psychologists, see Edwards, Lindman, and avage ,
But we are not statisticians, or at any rate none of us are wearing our

L.,

Conservatism in human information processing 361

statistician’s dunce caps today. Instead, as psychologists, we are interested
in comparing the ideal behavior specified by Bayes’s theorem with actual
human performance.

To give you some feeling for what follows, let us try an experiment with
you as subject. This bookbag contains 1,000 poker chips. I started out with
two such bags, one containing 700 red and 300 blue chips, the other
containing 300 red and 700 blue. I flipped a fair coin to determine which
one to use. Thus, if your opinions are like mine, your probability at the
moment that this is the predominantly red bookbag is 0.5. Now, you
sample, randomly, with replacement after each chip. In 12 samples, you
get 8 reds and 4 blues. Now, on the basis of everything you know, what is
the probability that this is the predominantly red bag? Clearly it is higher
than 0.5. Please don't continue reading till you have written down your
estimate. :

If you are like a typical subject, your estimate fell in the range from 0.7
to 0.8 - though the statement frequently made in the preceding para-
graphs that men are conservative information processors may have biased
your answer upward. If we went through the appropriate calculation,
though, the answer would be 0.97, Very seldom indeed does a person not
previously exposed to the conservatism finding come up with an estimate
that high, even if he is relatively familiar with Bayes’s theorem.

In about 1960, William L. Hays, a graduate student named Lawrence D.
Phillips, and 1 were interested in finding discrepancies between human
performance and that specified by Bayes’s theorem. The simple example of
he previous paragraph didn’t occur to us; instead we were sure that we
vould need to use a fairly complex situation in order to get non-Bayesian
behavior. So we used a hypothetical computerized radar system. There
pere 12 possible observations, 4 possible hypotheses, and so subjects had
o understand and use a display of 48 different values of P(D]H). Subjects
prorked under two conditions. In one, the subject saw a single stimulus, a
ot in a sector of a radar scope; he then revised his prior probabilities over
he four hypotheses on the basis of the datum by setting four levers to his
posterior probability estimates, then reset the levers to 0 in preparation for
he next stimulus. The second stimulus consisted of the old dot plus a new
ne; the subject set his levers to report the cumulative impact of both dots.
find so on, until 15 dots had accumulated. In the second condition, the
timuli were shuffled, and the subject in effect started afresh with each

pew stimulus. To the surprise of the experimenters the prediction of
Payes’s theorem that this difference in conditions should make no differ-

fnce to behavior was borne out. Moreover, there was yet another condi-

ion in which each new dot was displayed alone, but the subjects were

llowed to preserve their estimates from one stimulus to the next rather

“:m: resetting levers to zero after each estimate. Again, the variation in

onditions made little difference to behavior.
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The positive findings of the Phillips-Hays-Edwards experiment were
three in number. First, subjects were overwhelmingly conservative.
Secondly, they were least conservative on the first dot, becoming more so
with more dots. Finally, the sums of their probability estimates, which
were not constrained, in general added up to more than 1, and increased as
the subjects progressed through successive stimuli in an ordered sequence.
Apparently the subjects found it easier to determine which hypothesis was
favored by a stimulus, and so to increase the probability of that hypothesis,
than to decide from which other hypotheses probability should be with-
drawn in order to give it to the favored one.

We were notably dilatory in publishing this original conservatism
experiment. Though the data were complete by 1962, the Phillips-Hays-
Edwards paper didn’t make it into print until 1966 (Phillips et al., 1966).

The magnitude and consistency of the conservatism finding startled us.
It seemed appropriate to try much simpler tasks. So, without much faith,
Phillips and I tried a pretest similar in character to the bookbag and poker
chip example you tried above. To our surprise, it worked very well. Most
of the current rescarch comparing human behavior with Bayes’s theorem
can be traced to that pretest and the subsequent experiment.

If the proportion of red chips in the bookbag is p, then the probability of
getting r red chips and (1 — r) blue chips in u samples with replacement in
a particular order is p'(1 — p)"™". So in a typical bookbag and poker chip
experiment, if [1, is that the proportion of red chipsis p, and /1y is that that
proportion is py, then the likelihood ratio is

n-r

oAl e W
Pl — py)"

Note that while Equation 4 was derived from considering the actual
sequence of reds and blues in the sample, it could equally well have been
derived from considering r reds and (1 — r) blues in any order; the
binomial coefficient that represents the number of different ways one can
obtain r reds in n draws appears in both numerator and denominator and
thus cancels out of the likelihood ratio. This is an illustration of the
likelihood principle of Bayesian statistics (see Edwards, Lindman, &
Savage, 1963), which in effect says that a Bayesian need consider only the
probability of the actual observation he has made, not the probabilities of
other observations that he might have made but did not. This principle has
sweeping impact on all statistical and nonstatistical applications of Bayes’s
theorem; it is the most important technical tool of Bayesian thinking.

In the special case in which Pa =1 — pu (the symmetric binomial case),
the likelihood ratio reduces to

2r n
i Amb!v )
—_ \~>

Note that 2r — n = r — (1 — r) is the difference between the number of reds

RS 5B

ables substitute E, i i
2 quation 5 into Equat;
terms. The result is duation 3 take

posterior odds should pe Proportional to 5 — f thei

»mun. tional | ndependent varj
bpropriate to plot the subject’s inferred log likelihood MMMMGHM.:M

calculat i i

vOmm_anoMa ﬂaom:%% _.ucmn.mEOn odds (which in turn were calculated fr hi
post pro a ilities if he was estimating Probabilities) “objec.

:”Av\ appropriate prior odds, against s - f. nd the objec-

ost of the bookba in
8 and poker chij i i
. . P experiments in h ichi
nc:a.vww._ﬁ“% have used Emvhmv\ consisting of 48 numbered _Onmmz.?:nr_mm:
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_unmmmm..macmw m\g\mnwﬂ Mwﬁ_ experiments that program js n%rmnﬂmmnmmﬂﬂﬂ-
€ displayed sequence js i 4
frep . . appropriatel i
mmﬂgﬂw_&mm\ and in particular 50 that in each mthﬁ.gmh Mwmm‘mwm:»ﬂzwm o
‘ ;5 untrue hypothesis appropriately often for th iy m&.m .
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Figure 1. A single subject’s estimates for p, of 0.7, expressed in inferred log
likelihood ratios as a function of the dilference between the number of successes
and the number of failures in the sample.

Figure 2 shows accuracy ratios for :,Am .Hur::_um-maiuam mwwm MOn M_“M
three values of p,. For the least diagnostic information, the su :ﬂu. s << r
more extreme than Bayes’s theorem. (Dale has found the mm.anM ing; m,.
W. Edwards, 1965.) But for information having reasonably r,_mr iagnos _8
value, subjects were conservative, and zdw accuracy ratio was :_MM—M
constant with s — f. Note that as diagnosticity _:Qmmﬁmm\ nw:mm?m :
increases also. This is a standard finding of such mxnm:Ew:? mm..% Eo_Mw
dure that increases diagnosticity of the individual observation {(of one chip
or several) also increases conservatism. (See for example Peterson,

i Miller, 1965.)

mn__w”mm__mmwhn I, after obtaining these Hmm::m.\ speculated that Mw,_mw nmmmo_ﬂ
for conservatism might be that subjects, knowing that the vn.o_um ility Mnm

is bounded and observing that evidence ::ﬁ: goon Bo:_i_::m.:v an :mﬂ
were holding their estimates down. The obvious remedy, if so, is :M:mw:ﬁ
unbounded response mode, like odds. So we ran a mo:n-mncfv study. e
control group estimated probabilities by @_m:_w:::m 100 n___m.nmﬁw<¢-.mm o
troughs, as before. The verbal odds group simply made <mn¢m_ estima "
odds; we always take odds as numbers equal to or greater than ﬂ:m\r. d
therefore always accompany odds statements by statements of whic
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Figure 2. Accuracy ratios for three values of p, over various sample compositions.

hypothesis is favored by the odds. The odds on a log scale group made
their estimates by moving a pointer along an odds scale which contained
four log cycles, so that odds anywhere from 1:1 to 10,000:1 could be
estimated. The fourth group used the odds on a log scale device also, but
the numbers entered opposite the scale markings were probabilities rather
than odds (thus 0.5 rather than 1:1, 0.67 rather than 2:1, 0.80 rather than
4:1, etc.). It was called the probability on a log odds scale group. The
findings were that all groups were quite conservative. The probability
group was most so, probability on a log odds scale was next worst, and the
two odds groups were about comparable, with odds on a log scale slightly
superior.

This finding simply underlines a fact that has become increasingly clear
in the course of Bayesian work. Probability is a rather poor measure of
uncertainty, except in situations in which repartitioning or other direct
use of the additivity property is necessary. Either odds or log odds is
better. Odds is most intuitive for naive subjects, and can most easily be
linked to simple acts (e.g., choices among bets); the fact that the gambling
industry structures all its statements and displays around odds rather than
probability is both recognition of and perhaps cause of the greater
intuitive value of odds. Log odds, uniquely among the more-or-less
common metrics for uncertainty, has the property that in that metric
evidence is additive. If opinion is measured in log odds, the amount of
change in opinion produced by a piece of evidence is independent of
where the opinion was to start with. This elegant property makes log odds
uniquely convenient for Bayesian experiments,

The Phillips-Edwards data can be well fit by a simple modification of
Bayes’s theorem:

Q,=L°Q,

The constant ¢, the power to which each likelihood ratio is raised before
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processing it by means of Bayes’s theorem, is the accuracy ratio. Unfortu-
nately, it is dependent on important independent variables, including
diagnosticity of the data and response metric. Still, the fact that so simplea
descriptive model fits so well must be explained by any theory of
conservatism. . . .

-+« A Probabilistic Information Processing system, or PIP, . . . is an idea
about how to design man-machine systems that must process information
for the purpose of reaching a conclusion about what state the world is in.
Examples of settings in which such information processing must be done
include medical diagnosis, military command (in which a commander may
need to determine whether or not he is under attack, and if so, what his
opponent’s plan is), and business management (for example, in the case of
a businessman deciding whether or not to manufacture a new product).
The idea of PIP is much too complicated to explain in detail here. For
recent expositions of it, see Edwards, Lindman, and Phillips (1965), or
W. Edwards (1966). The essence of it is that the task of diagnostic informa-
tion processing can be divided into two classes of subtasks. One class of
subtasks consists of the judgment of the diagnostic impact of an individual
datum on a single hypothesis or pair of hypotheses. For the verbal,
qualitative kinds of data and hypotheses that characterize many real
diagnostic settings, this seems to be a task necessarily done by men, the
more expert the better. But the second class of subtasks is the aggregation
of these separate diagnostic impacts across data and across hypotheses into
a picture of how all the hypotheses currently stand in the light of all
available data. This aggregation task is readily mechanized by means of
Bayes's theorem, if the diagnostic impacts of the individual data are judged
in the form of P(D|H) values or likelihood ratios. (In most situations,
though not all, judgments of likelihood ratios are clearly preferable, for
formal reasons, to judgment of P(D|H).)

About fifteen collaborators and I were interested in finding out whether
PIP works or not. So we designed an imaginary but elaborate world of
1975. In that world we listed six hypotheses that subjects were to consider,
specified three data sources (the Ballistic Missile Early Warning System, a
reconnaissance satellite system, and the intelligence system) that provided
data bearing on these hypotheses, and designed four information process-
ing systems to process the data. The four systems were named PIP, POP,
PEP, and PUP. In PIP, the subjects estimated five likelihood ratios per
datum. One of the six hypotheses was “Peace will continue to prevail” and
the other five were various possible wars; the five pairings of a war with
peace specified the five likelihood ratios to be estimated. The other three
information processing systems all had in common that the subject
estimated posterior odds or probabilities or similar posterior quantities;
thus in PIP the computer aggregated the data by means of Bayes’s theorem,
while in all three other systems the subjects had to aggregate the data in
their heads. To help them do this, the subjects in POP, PEP, and PUP had
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Figure 3. Final odds in favor of war for POP vs. PIP plotted on log scales.

heir estimates after the nth datum available when they considered the

f + 1)th datum, so they only needed to modify those estimates affected
y the datum. ‘

There were a total of 18 scenarios, with 60 data items per scenario. All

lta items except for those from the Ballistic Missile Early Warning System

ere in the form of short paragraphs. The 34 subjects were exhaustively
ained in the characteristics of the world, the hypotheses, the three data
purces, and the information processing system each was to operate.

Since PIP was clearly best and POP was next best, I shall present only
he comparison between them. (PUP was third best, and PEP, the nearest
e could get to how such information processing is done now, was worst.)
igure 3 shows the final odds, after the 60th datum in each scenario, in
pvor of each war as compared with peace for PIP and for POP., The two
host important things to note about the figure are that the two groups
pree very well qualitatively (the correlation between them is 0.895), but
hey disagree quantitatively. PIP is much more sensitive to data than POP;
he same scenario that will lead PIP to be very sure of peace or of some war
ill lead POP to be much less sure. To put it another way, PIP is much less
nservative than POP - presumably because in POP, the subjects must
pgregate the data, while in PIP, the subjects judge the diagnostic impact
 each datum separately and Bayes's theorem does the aggregating.

You should note also that both axes on Figure 3 are logarithmically
paced. If you translate the difference in efficiency back into odds, the
ramatic difference between PIP and POP becomes apparent. For example,
plculating from the regression line, if a scenario led PIP to give 99:1 odds
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Figure 4. Median posterior odds, across subjects, in favor of the beginning bookbag
as a function of number of draws.

in favor of some war over peace, POP would give only 4:1 odds in favor of
2 r peace. . o
:ﬁﬂmwﬂ“ﬂﬂ%«t:c: hypothesis cannot _qu.mzu_% mxv_mds ﬂr_m.m_ﬂwﬂmwwﬂw
between PIP and POP. The PIP subjects estimate the Q.mm.:o,nmr—n:. _Mmmm !
each datum separately; the POP subjects must aggregale _% \ .m ¥ heads
and do so quite conservatively. Since no model of ”,rmr ata Waon omam
process is available, it is impossible to say what :.5 rig MvOm e or oa
are. But the difference between PIP and POP is clearly caused by
iffere in the aggregation process. .
Q.ﬂ“«%nm—u_ﬁ_ﬁ_ﬁvw vm:mr of .%m collaborators in this mx.ﬁm::am:mwm “H
concerned about the fact that no model of :E.amﬁm-mmwmnm::m ﬂﬂcw e
available and so it was not possible to say with n.mzm::v\ w m&ﬂ:v b
POP was more nearly right. So for his Ph.D. thesis he compare b
POP in a situation in which a model of :aw Qm.,m-mm:m;.::m mnOnw v
available, it was meaningful to ask for a likelihood ratio m.w:Bmﬂ.mEM%m
single datum, and the POP procedure produced conservative esti :
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His subjects were the editors of the University of Michigan student
newspaper. He took each editor’s editorials for a semester, counted the
first two letters and the last two letters of each word of each editorial, and
thus for each editor prepared a bookbag full of beginning bigrams and a
bookbag full of ending bigrams. For the PIP task, he took certain bigrams,
and asked an editor to estimate (for his own bookbags only) the likelihood
ratio, taken with the beginning-bag hypothesis in the numerator and the
ending-bag hypothesis in the denominator, associated with each bigram.
For the POP task, he prepared a sequence of bigrams sampled from one of
the bookbags, and asked the editor, as he worked through the sequence, to
estimate the posterior odds that it was the beginning, not the ending, bag
being sampled from. Much care was devoted to preliminary training of the
editors, and likelihood ratio estimates were collected twice, once before
and once after posterior odds estimates.

A problem in data analysis arose because al} judgments, for both PIP and
POP, were biased in favor of the beginning bag. This is probably because it
is much easier, for example, to think of words that begin with re than to
think of words that end in re, even though re is more common as an
ending than as a beginning; we are accustomed to tagging words by their
beginnings, not endings, when we, for example, look them up in a
dictionary. However, it is possible to correct for such biases. Figure 4
shows the results after such a correction. The veridical odds, calculated
from the actual bigram counts, are most extreme. Next come the odds
@lculated from the second set of likelihood ratio estimates. Next come the
odds calculated from the first set of likelihood ratio estimates. And, closest
fo the middle and therefore most conservative, are the directly estimated
posterior odds. If we believe these data (and I do), though PIP is considera-
bly less conservative than POP, it is still too conservative - but PIP
estimates improve with practice.




