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Abstract 

Deciding which piece of information to acquire or attend to is fundamental to perception, 

categorization, medical diagnosis, and scientific inference.  Four statistical theories of the value of 

information—information gain, Kullback-Liebler distance, probability gain (error minimization), 

and impact—are equally consistent with extant data on human information acquisition (Nelson, 

2005; 2008).  Three experiments, designed via computer optimization to be maximally 

informative, tested which of these theories best describes human information search.  Experiment 

1, which used natural sampling and experience-based learning to convey environmental 

probabilities, found that probability gain explained participants’ information search better than the 

other statistical theories or the probability of certainty heuristic.  Experiments 1 and 2 found that 

participants behaved differently when the standard method of verbally-presented summary 

statistics was used to convey environmental probabilities.  Experiment 3 found that participants’ 

preference for probability gain is robust, suggesting that other models contribute little to 

participants’ search behavior. 
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Many situations require careful selection of information.  Appropriate medical tests can improve 

diagnosis and treatment.  Carefully designed experiments can facilitate choosing between 

competing scientific theories.  Visual perception also requires careful selection of eye movements 

to informative parts of a visual scene.  Intuitively, useful experiments are those for which plausible 

competing theories make the most contradictory predictions.  A Bayesian optimal experimental 

design (OED) framework provides a mathematical scheme for calculating which query 

(experiment, medical test, or eye movement) is expected to be most useful.  Mathematically, it is a 

special case of Bayesian decision theory (Savage, 1954).  Note that a single theory is not tested in 

this framework, but rather multiple theories.  The usefulness of an experiment is a function of the 

probabilities of the hypotheses under consideration, the explicit (and perhaps probabilistic) 

predictions that those hypotheses entail, and which utility function is being used.   

In situations where different queries cost different amounts, and different kinds of mistakes 

have different costs, those constraints should be used to determine the best queries to make, rather 

than general purpose criteria for the value of information.  This article, however, deals with 

situations where information gathering is the only goal.  Specifically, we focus on situations in 

which the goal is to categorize an object by selecting useful features to view.  Querying a feature, 

to obtain information about the probability of a stimulus belonging to a particular category, 

corresponds to an “experiment” in the OED framework, and will generally change one’s belief 

about the probability the stimulus belongs to each of several categories.  For instance, in 

environments where a higher proportion of men than women have beards, learning that a particular 

individual has a beard increases the probability that they are male.  The various OED models differ 

in terms of how they calculate the usefulness of looking at particular features.  All of the models 
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use Bayes’s theorem to update beliefs about the probability of each category ci when a particular 

feature value f is observed: 

       (1) 

where  

       (2) 

For updating to be possible, the probability distribution of the features and categories must be 

known.
  
A practical difficulty is conveying a particular set of environmental probabilities to 

participants, an issue we address subsequently.  

Several researchers have offered specific OED models (utility functions) for quantifying 

experiments’ usefulness in probabilistic environments (e.g. Good, 1950; Fedorov, 1972; Lindley, 

1956).  Some prominent OED models from the literature are described below.  They disagree with 

each other in important cases about which potential experiment is expected to be most useful 

(Nelson, 2005, 2008).  

OED models of the usefulness of experiments 

We use F (a random variable) to represent the experiment of looking at feature F, before its 

specific form fj is known.  Each OED model quantifies F’s expected usefulness as the average of 

the usefulness of the possible fj, weighted according to their probability: 

       (3) 

where u(fj) is the usefulness (utility) of observing fj, according to a particular utility function.  Each 

OED model’s calculation of the usefulness of observing a feature value fj, u(fj), is given below. 
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Probability gain (error minimization: Baron, 1981/1985) defines a datum’s usefulness as 

the extent to which it increases the probability of correctly guessing the category of a randomly 

selected item: 

       (4) 

Probability gain is by definition optimal where correct decisions are equally rewarded, and 

incorrect decisions are equally penalized.   

Information gain (Lindley, 1956) defines a datum’s usefulness as the extent to which it 

reduces uncertainty (Shannon entropy) about the probabilities of the individual categories ci: 

    (5)   

KL distance defines a datum’s usefulness as the extent to which it changes beliefs about the 

possible hypotheses ci, where belief change is measured with Kullback-Liebler (Kullback & 

Liebler, 1951) distance:  

       (6) 

Expected KL distance and expected information gain are always identical (Oaksford & Chater, 

1996), e.g. EP(f)[ uKL(f) ] = EP(f) [ uIG(f) ], making those measures equivalent for present purposes.   

Impact (Klayman & Ha, 1987, pp. 219–220; Nelson, 2005, 2008; Wells & Lindsay, 1980) 

defines a datum’s usefulness as the sum absolute change from prior to posterior beliefs (perhaps 

multiplied by a positive constant), over all hypotheses:  

       (7) 
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Impact and probability gain are equivalent if prior probabilities of the categories are equal.  These 

utility functions can be viewed as candidate descriptive models of attention for categorization. 

Bayesian diagnosticity (Good, 1950) and log diagnosticity, two additional measures, 

appear to contradict participants’ behavior (Nelson, 2005), so we do not consider them here.
1
     

Statistical  models and human information acquisition 

Which, if any, of the OED models describe human behavior?  Wason’s research in the 

1960s, and several subsequent articles, suggest that there are biases in human information 

acquisition (Baron, Beattie, & Hershey, 1988; Klayman, 1995; Nickerson, 1998; Wason, 1960, 

1966, Wason & Johnson-Laird, 1972; but see Peterson & Beach, 1967, pp. 37-38).  Since about 

1980, however, several authors have suggested that OED principles provide a good account of 

human information acquisition (McKenzie, 2004; Nelson, 2005, 2008; Trope & Bassok, 1982), 

even on Wason’s original tasks (Ginzburg & Sejnowski, 1996; McKenzie, 2004; Nelson, 

Tenenbaum & Movellan, 2001; Oaksford & Chater, 1994).  OED principles have been used to 

design experiments on human memory (Cavagnaro, Myung, Pitt & Kujala, in press), to explain 

eye movements as perceptual experiments (Butko & Movellan, 2008; Rehder & Hoffman, 2005; 

Nelson & Cottrell, 2007), to control eye movements in oculomotor robots (Denzler & Brown, 

2002), and to predict individual neurons' responses (Nakamura, 2006). 

In some cases, claims that human information acquisition is suboptimal because it follows 

ostensibly suboptimal heuristic strategies are questionable, because the heuristic strategies 

themselves correspond to OED models.  Consider the feature difference heuristic (Slowiaczek, 

Klayman, Sherman & Skov, 1992).  This heuristic, which applies in categorization tasks with two 

categories (c1 and c2) and two-valued features, entails looking at the feature for which 

abs( P(f1 | c1) – P(f1 | c2) ) is maximized.  This heuristic exactly implements impact, an OED 
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model, irrespective of the prior probabilities of c1 and c2, and irrespective of the specific feature 

likelihoods (proof in Nelson, 2005, footnote 2; Nelson, 2009).  This heuristic, therefore, is not 

suboptimal at all.  In another case, Baron et al. (1988) found that participants exhibited 

information bias—valuing queries that change beliefs but do not improve probability of correct 

guess— on a medical diagnosis information-acquisition task.  Yet information gain and impact, 

alternate OED models, also exhibit that bias (Nelson, 2005), suggesting that the choice of model 

may be central to whether or not a bias is found.     

Which OED model best describes people’s choices about which questions to ask?  Nelson 

(2005) found that existing experimental data in the literature were unable to distinguish between 

the candidate models.  Nelson’s new experimental results strongly contradicted Bayesian 

diagnosticity and log diagnosticity, but were unable to differentiate between other OED models as 

descriptions of human behavior.   

Here we address whether information gain/KL distance, impact, or probability gain best 

explains participants' evidence-acquisition behavior.  We also test the possibility that participants 

may use a non-OED heuristic strategy of maximizing the probability of learning the true 

hypothesis (or category) with certainty (Baron et al., 1988).  Mathematically, this model states that 

a datum (e.g. a specific observed feature value, or other experiment outcome) has utility 1 if it 

reveals the true category with certainty, and utility 0 otherwise. 

We use computer search techniques to find statistical environments in which two models 

maximally disagree about which of two features is most useful for categorization, and then test 

those environments with human participants.  A major limitation of most previous work in this 

area is that the participants have been told probabilities verbally.  Yet verbal description and 

experience-based learning result in different behavior on several psychological tasks (Hertwig, 
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Barron, Weber, & Erev, 2004; McKenzie, 2006).  We therefore designed an experiment using 

experience-based learning, with natural sampling (random according to environmental 

probabilities) and immediate feedback to convey the underlying probabilities.  We also use a 

within-subjects manipulation to compare how experience in the statistical environment versus 

verbal statistics-based transmission of the probabilities influences information acquisition.  The 

results are dramatically different. 

Experiment 1: Pitting OED theories against one another using experience-based learning 

This experiment involved classifying the species of simulated plankton (copepod) 

specimens as species a or b (here a and b play the role of c1 and c2) where the species was a 

probabilistic function of two two-valued features, F and G.  Participants first learned 

environmental probabilities in a learning phase, where both features were visible, and then 

completed an information-acquisition phase, in which only one of the features could be selected 

and viewed on each trial.   

In the learning phase, participants learned the underlying environmental probabilities by 

classifying the species of each plankton specimen, with immediate feedback.  On each trial, a 

stimulus was chosen randomly according to the probabilities governing categories and features.  

One form of each feature was always present.  The learning phase continued until a subject 

mastered the underlying probabilities.  Figure 1 gives illustrative examples of the plankton stimuli 

and the probabilistic nature of the categorization task. 

In the subsequent information-acquisition phase participants continued to classify the 

plankton specimens.  However, the features were obscured, and only one feature (selected by the 

participant) could be viewed on each trial.  The feature likelihoods in each condition were 

designed so that two competing theories of the value of information strongly disagreed about 
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which of the two features was more useful.  In this way, participants' choice of which feature to 

view also provided information about which theoretical model best describes their intuitions about 

the usefulness of information.  We pitted the four different OED models and the heuristic against 

each other in four conditions, as shown in Table 1. 

Finally, each participant completed a verbal summary statistic-based questionnaire on the 

usefulness of several features in an alien categorization task.  The questionnaire employed the 

same probabilities that the participant had just learned experientially on the plankton task.  This 

enabled within-subjects comparison of how the different means of conveying environmental 

probabilities affect information-acquisition behavior. 

Participants 

Participants were 129 students in social science classes at UCSD, who received partial or 

extra course credit for participation.  Participants were run in small groups of up to 5 people, over 

1.5 to 2 hours.  Participants were assigned at random to one of the four conditions in Table 1, 

while keeping approximately equal numbers who reached criterion learning performance in each 

condition. 

Optimizing experimental probabilities 

We used computational search techniques to identify the feature likelihoods in each 

condition such that a pair of theories maximally disagreed about which feature (F or G) was more 

useful (see supplementary material).  This automatic procedure found scenarios with strong (and 

often non-obvious) cases of disagreement between theories.  Note that a prior probability 

distribution is specified by five numbers: the prior probability of category a, P(a), and four feature 

likelihoods, P(f1|a), P(f1|b), P(g1|a), and P(g1|b).  We set P(a) to 70%, as suggested by Nelson’s 

(2005) optimizations.  The program first finds a case at random in which the two models disagree, 
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and then modifies the four feature likelihoods to make that disagreement as large as possible 

(Figure 2).  Table 1 gives the feature likelihoods for the conditions of Experiment 1 obtained by 

the optimizations, for each pair of models compared.   

We defined the preference strength of a model m for feature F, PStrm, as the difference 

between the two features’ expected usefulness, e.g. eum(F) – eum(G), where each term is defined 

by Equation 1, scaled by the maximum possible difference in features’ usefulness according to 

model m, maxPStrm, multiplied by 100: 

PStrm = 100 * (eum (F) – eum (G)) / maxPStrm      (8) 

The (typically unique) maximum possible preference strength, for all the OED models and the 

probability of certainty heuristic, is obtained where the categories are equally probable a priori, 

one feature is definitive, and the other feature is useless, e.g. where P(a) = P(b) = 0.50, P(f1|a) = 0, 

P(f1|b) = 1, and P(g1|a) = P(g1|b). 

We then defined the pairwise disagreement strength (DStr) as the geometric mean of the 

opposed models’ respective absolute preference strengths (PStrm1 and PStrm2), when model 1 and 

model 2 disagree:   

 DStrm1 vs. m2 = ( |PStrm1| *  |PStrm2| )
 0.5

,  if PStrm1  *  PStrm2  ≤ 0   (9) 

If, however, the models agree about which feature is most useful, DStr is zero: 

 DStrm1 vs. m2 = 0,  if PStrm1  *  PStrm2  ≥ 0.      (10) 

An example calculation is provided in the supplementary material.     

Design and procedure of behavioral experiment 

Software was programmed to conduct the experiment.  Participants were familiarized with 

the features in advance, to ensure that they perceived the two variants of each feature (Figure S3).  
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The physical features (eye, claw, and tail) were adjusted during pilot research to minimize any 

salience differences.  Each participant was randomly assigned to one of 96 possible 

randomizations of each condition to guard against any residual bias among the physical features, 

the two variants of each feature, or the species names.   

The learning phase of the experiment was similar to probabilistic category learning 

experiments (Knowlton, Squire & Gluck, 1994; Kruschke & Johansen, 1999).  In each trial a 

plankton stimulus was randomly sampled from the environmental probabilities, and presented to 

the participant: the category was chosen according to the prior probabilities P(a) and P(b), and the 

features were generated according to the feature likelihoods, P(f1|a), P(f1|b), P(g1|a), and P(g1|b).  

There were no symmetries or other class-conditional feature dependencies.  The participant 

classified the specimen as species a or b and was given immediate feedback on whether the 

classification was correct according to which category had been generated.  Note that the optimal 

decision (corresponding to the category with highest posterior probability, given the observed 

features) was frequently given negative feedback, because certain combinations of features were 

observed in both species (cf. Figure 1).  Participants were also given the running percent of trials 

in which their classifications were correct.   

Subjects vary by more than a factor of 10 in the number of trials needed to learn.  The 

learning phase continued until criterion performance was reached, or the available time (~2h) 

elapsed.  Criterion performance was defined as either (1) making at least 99% optimal (not 

necessarily correct) responses in the last 200 trials, irrespective of the specific stimuli in those 

trials; or (2) making at least 95% optimal responses in the last 20 trials of every single stimulus 

type.  The goal was to ensure that participants achieved high mastery of the environmental 

probabilities before beginning the information-acquisition test phase.
2
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Experience-based learning results 

A median of 933, 734, 1082, and 690 trials on the experience-based learning phase were 

required to achieve criterion performance in Conditions 1-4, respectively.  113 of 129 participants 

achieved criterion performance, and were given the information-acquisition task.   

The most striking information-acquisition result is that in all conditions, irrespective of 

what theoretical models were being compared, the feature with higher probability gain was 

preferred by a majority of participants (Figure 3).  Moreover, the preference to view the higher-

probability gain feature is quite strong.  Aggregating all conditions, the median participant viewed 

the higher-probability gain feature 99% of the time (in 100 of 101 trials).
3
  Between 82% and 97% 

of participants preferentially viewed the higher probability gain feature (F) in each condition 

(Table 2; all p’s < 0.001).  In Conditions 1 and 2, all models except probability gain preferred G, 

making participants’ preference for F especially striking.  In Condition 3, 27 of 28 participants 

preferred F, which optimized information gain, probability gain, and probability of certainty, 

rather than impact.  In Condition 4, 28 of 29 participants preferred to optimize the OED models, 

including probability gain, rather than the probability of certainty heuristic.    

Summary statistics-based task 

After completion of the experience-based learning and information-acquisition phases of 

the probabilistic plankton categorization task, participants were given an equivalent task, in which 

environmental probabilities (prior probabilities and feature likelihoods) were presented verbally 

via summary statistics.  (Gigerenzer & Hoffrage, 1995, called this the standard probability 

format.)  This task used the Planet Vuma scenario (Skov & Sherman, 1986), in which the goal is to 

classify the species of invisible aliens (“glom” or “fizo”) by asking about features that the different 

species have in varying proportion (such as wearing a hula hoop, or gurgling a lot).  The prior 
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probability of each species, e.g. P(glom) = 70%, and the likelihoods of each feature, e.g. 

P(hula | glom) = 0%, and P(hula | fizo) = 29%, exactly matched the plankton task the participant 

had just completed (though this was not disclosed to subjects).  An uninformative third feature 

(present in 100% of both species or in 0% of both species) was also included to ensure that 

participants read and understood the given information.  Participants were asked to rate, from most 

to least useful, which of the features would be most helpful to enable them to categorize an alien 

as a glom or fizo.      

Summary statistics-based results; comparison with experience-based learning 

Statistics-based results were much less clear than experience-based results.  Interestingly, 

the trend in every condition was for the feature with higher information gain (not probability gain) 

to be preferred.  Were participants consistent?  We performed chi-square tests in each condition 

across the two tasks, to assess whether individual preferences in experience-based learning predict 

preferences in summary statistics-based learning.  All tests were nonsignificant, providing no 

evidence for within-subject consistency, inconsistency, or any relationship whatsoever between the 

modalities.  This suggests that data from summary statistics-based information-acquisition 

experiments in the literature may fail to predict naturalistic information-acquisition tasks (e.g. eye 

movements in natural scenes) where people have personal experience with environmental 

probabilities. 

Experiment 2: summary statistics-based information acquisition 

Confidence intervals for participants’ preferences between features from the statistics-

based task (in which participants gave a rank order only) were much broader than those from the 

comparatively data-rich experience-based task (in which there were 101 information-acquisition 

trials).  We therefore obtained statistics-based-task data from 106 additional UCSD students.  
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Participants were randomly assigned to one of the same four conditions as in Experiment 1.  

Participants were assigned at random to either an alien or plankton categorization scenario.  Each 

participant was randomly assigned to one of 96 possible randomizations of their condition's 

probabilities.  Results in both scenarios were consistent with Experiment 1’s statistics-based 

results.  We therefore aggregate all statistics-based results below. 

Experience- vs. statistics-based learning results 

Table 2 compares experience- and statistics-based information-acquisition results.  The 

proportion of participants preferring F was different, in every condition, between the types of 

learning.  Experience-based learning led to preferring the feature with higher probability gain in 

every condition.  Statistics-based learning led to a modal preference to maximize information gain 

in each condition.  However, statistics-based results are indistinguishable from chance in 

Conditions 3 and 4, and less clear in all conditions.   

Experiment 3: How robust is the preference for probability gain? 

In Experiment 3, we explore possible limits in the circumstances where participants 

maximize probability gain, as outlined below. 

Experiment 3, Condition 1.  Would information gain or the possibility of a certain result 

"break the tie" when probability gain is indifferent?  We tested this in one scenario where both F 

and G have probability gain 0.25, yet F has higher information gain and is the only feature to offer 

the possibility of a certain result: P(a) = 0.50, P(f1|a) = 0, P(f1|b) = 0.50, P(g1|a) = 0.25, and P(g1|b) 

= 0.75.  Surprisingly, only about half of subjects (12/22= 55%) preferred F, even though its greater 

information and the possibility of certainty had zero cost in terms of probability gain. 

Experiment 3, Condition 2.  Another approach is to modify Experiment 1, Conditions 1 and 
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2, so that probability gain has a relatively marginal preference for F, while the other models have 

increased preference for G.  We tested one such scenario, where P(a) = 0.70, P(f1|a) = 0, P(f1|b) = 

0.15, P(g1|a) = 0.57, and P(g1|b) = 0.  Here, probability gain marginally prefers F (PStr= 9), 

whereas the other models more strongly prefer G (PStr for information gain, impact, and 

probability of certainty, respectively, are: -20, -35, and -35).  Eight of nine learners maximized 

probability gain. 

Experiment 3, Condition 3.  Yet another approach is to modify Experiment 1, Conditions 1 

and 2, so that the F feature, taken alone, can never give a certain result.  We evaluated this where 

P(a)=0.70, P(f1|a)=0.04, P(f1|b)=0.37, P(g1|a)=0.57, and P(g1|b)=0.  F has higher probability gain.  

Yet G is the only feature to offer the possibility of a certain result, and has higher information gain 

and impact.  Here, 6 of 20 subjects (30%) preferred G.  This environment is the first we have 

identified in which a nontrivial minority of subjects optimize something besides probability gain.   

Taken together, our data strongly point to probability gain (or a substantially similar 

model) as the primary basis for the subjective value of information in categorization tasks.   

 

General Discussion 

This article reports the first information-acquisition experiment in which both:  

(1)  environmental probabilities were designed to maximally differentiate theoretical 

predictions of competing models, and  

(2)  experience-based learning was used to convey environmental probabilities.   

Previous studies did not distinguish between several models of information-acquisition 

behavior.  Yet we obtained very clear results pointing to probability gain as the primary basis for 
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the subjective value of information for categorization.  Our within-subjects comparison of 

traditional summary statistics-based presentation of environmental probabilities with experience-

based learning is another contribution.  The convincing lack of relationship between the two types 

of tasks is remarkable and should be explored further.  For instance, the visual system may code 

statistics and contingencies more effectively than linguistic parts of the brain.  As a practical 

matter, experience-based learning might be speeded by simultaneous presentation of multiple 

examples (Corter & Matsuka, 2007).  Verbal-based information search might be facilitated by 

natural frequency formats or explicit instruction in Bayesian reasoning (Gigerenzer & Hoffrage, 

1995; Krauss, Martignon, & Hoffrage, 1999; Sedlmeier & Gigerenzer, 2001).   

Treating evidence acquisition as an experimental design problem broadens the “statistical 

man” approach, which originally focused on inferences people make given preselected data 

(Peterson & Beach, 1967).  Key current questions include:  

-- Does information acquisition in medical diagnosis, scientific hypothesis testing, and word 

learning optimize probability gain?  

-- Does the visual system optimize probability gain when directing the eyes' gaze?   

-- Can people optimize criteria besides probability gain when necessary?   

Theories of the statistical human should aim to address these issues in a unified account of 

cognitive and perceptual learning and information acquisition. 
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Footnotes 

1.   The diagnosticity measures are also flawed as theoretical models (Nelson 2005, 2008).  

For instance, they prefer a query that offers 1 in 10
100

 probability of a certain result, but is 

otherwise useless, to a query that will always provide 99% certainty. 

2.   In some conditions, one could in principle learn only the F feature and trigger the 

performance criterion.  However, error data during learning (Figures S1 and S2), debriefing of 

subjects following the experiment, explicit tests of knowledge in a replication of Experiment 1, 

Condition 1, and subsequent experiments show that participants learned configurations of features.   

3.   We separately tested the extent to which participants will view an individual feature, if 

two features are statistically identical, where P(a) = P(b) = 0.50, P(f1 | a) = 0, P(f1 | b) = 0.5, 

P(g1 | a) = 0, and P(g1 | b) = 0.5.  For each participant, the median percent of views to their more-

frequently-viewed feature was 64%.  This suggests that if the vast majority of participants view a 

particular feature in the vast majority of trials, that behavior should be taken to reflect a real 

preference between features, and not simply habit or perseveration. 
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Tables 

Table 1 

Feature likelihoods to best differentiate competing theoretical models of the value of information 

Cond. P(f1 | a) P(f1 | b)  P(g1 | a)  P(g1 | b)    DStr  Model preferring F  PStrm1 eum1(F) eum1(G)   Model preferring G  PStrm2 eum2(F) eum2(G) 

1 0  0.24 0.57 0  14.5 Probability gain 14.4 0.072 0.000 Information gain  

(impact,  

prob. certainty) 

-14.5 0.135 0.280 

2 0  0.29 0.57 0 20.2 Probability gain 17.4 0.087 0.000 Impact  

(information gain, 

prob. certainty) 

-23.5 0.122 0.239 

3 0 0.40 0.73 0.22  8.2 

 

Information gain  

(probability gain, 

prob. certainty) 

 7.2 0.238 0.166 Impact  -9.2 0.168 0.214 

4 0.05 0.95 0.57 0 37.9 Probability gain, 

information gain,  

impact 

36.0 
# # 

Prob. certainty 39.9 0.000 0.399 

 

Note.  In all conditions, we set P(a) = 0.70, and P(b) = 0.30.  F denotes the feature with higher probability gain.  Disagreement 

strength (DStr) scales between  0 (none) to 100 (maximal).  PStrm1 denotes Model 1’s preference strength for F, versus G.  PStrm2 

denotes Model 2’s preference strength between F and G; this is negative because Model 2 prefers G.  eum1(F) is the expected utility of 

F, according to Model 1.  Models in parentheses were not optimized in the condition per se, but also prefer the feature in their 

respective column. 

#In Condition 4, PStrm1 is based on the geometric mean of the individual Preference Strengths of probability gain (50), information 

gain (34), and impact (28).   
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Table 2 

Information-acquisition results, Experiments 1 and 2  

Condition   Proportion of participants preferring  

higher-probability gain feature (F): 

Views to F in  

experience-based task: 

 Experience- 

based 

Statistics- 

based 

Experience  

= Statistics? 

Median  

participant 

Mean, over  

all participants 

1 82 % 
***

 27 % 
**

 no 
****

 97 % 77 % 

2 82 % 
***

 30 % 
*
 no 

****
 97 % 75 % 

3 96 % 
****

 65 % 
ns

 no 
**  

 99 % 89 % 

4 97 % 
****

 58 % 
ns

 no 
*** 

 100 % 94 % 

 

Note.  F denotes the feature with higher probability gain.  In all conditions, P(a) = 0.70, and 

P(b) = 0.30.  Table 1 gives the feature likelihoods in each condition.  Two-tail binomial tests 

were used to test whether the number of participants favoring F was different from chance in 

each condition.  Two-tail difference of proportions tests were used to test whether equivalent 

proportions of participants preferred F in the experience-based and summary statistics-based 

tasks.  P-values are reported as follows:  p
 
<

 
0.0001, 

****
;  p

 
<

 
0.001, 

***
;  p

 
<

 
0.01, 

**
;  p

 
<

 
0.05, 

*
;  

p ≥ 0.05,
 ns

.  There were 28-29 experience-based, and 43-45 statistics-based, participants in each 

condition.    
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Figures and Captions 

Figure 1.   

Illustrative plankton specimens (see supplemental figures S3-S5 for actual stimuli – these have 

been altered to make the differences clearer in print).  The plankton in the left half are species a, 

and those on the right are species b.  Note that only the eye (which can be yellow or black) and 

claw (which can be dark or light green) vary between the specimens.  Because of the 

probabilistic distribution of the features within each species, most specimens cannot be identified 

as species a or species b with certainty.  (The same images, e.g., with black eye and light green 

claw, occur in each category.)  In this case (assuming the observed specimens match underlying 

probabilities), P(species a | yellow eye) = 1, P(species b | black eye) = 13/16, P(species a | light 

green claw) = 7/8, and P(species b | dark green claw) = 7/8.  Information gain, impact, and 

probability gain agree that the claw is more useful than the eye, but only the eye offers the 

possibility of certainty. 
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Figure 2.   

Finding maximally informative features (F and G) to differentiate the predictions of competing 

theoretical models of the value of information (Model 1 and Model 2).  The goal of each 

optimization is to maximize Disagreement Strength (DStr)—which is based on the geometric 

mean of the two models’ absolute preference strengths—between the models. 

--A: Model 1 considers F to be slightly more useful than G, and Model 2 considers G to be 

slightly more useful than F.  The shallow slopes of the connecting lines illustrate that the 

models’ (contradictory) preferences are weak, and DStr is low.  Generating feature likelihoods at 

random, the first step in the optimizations to maximally differentiate competing theoretical 

models of the value of information, typically only finds weak disagreement. 

--B: the ideal scenario for experimental test, where DStr is maximal.  Model 1 holds that F is 

much more useful than G; Model 2 has opposite and equally strong preferences.   

--C: Model 2 strongly prefers G to F, and Model 1 marginally prefers F to G.  This is not an 

ideal case to test experimentally.  Because Model 1 is close to indifferent, DStr is low even 

though Model 2 has a strong preference. 

--D: DStr is higher in this scenario than in Panel C,  because the models both have moderate (and 

contradictory) preferences. 
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Figure 3.   

Experience-based-learning participants almost exclusively viewed the higher-probability gain 

feature (F).  The median participant viewed F 97%, 97%, 99%, and 100% of the time in 

Conditions 1 through 4, respectively.  (Chance = 50% in each condition.  All p’s < 0.001; see 

Table 2.)  The boxes give the interquartile range, with notches denoting the median.  The 

outermost bars depict the extent of the data, with the exception of outliers (+) which are more 

than 10 times beyond the interquartile range. 
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Supplemental material 

Optimization notes 

An example illustrates calculation of DStr, for Condition 1: 

PStrPG = 100 * ( euPG(F) - euPG(G) ) / maxPStrPG  

  = 100 * (0.072 - 0) / 0.50 = 14.4 

PStrIG  = 100 * (euIG(F) - euIG(G)) / maxPStrIG  

  = 100 * (0.134 bits - 0.280 bits) / 1 bit = -14.6 

DStr  = ( | 14.4 | * | -14.6 | )
0.5

 = 14.5, because PStrIG * PStrPG < 0. 

In each optimization, obtained feature likelihoods were rounded to the nearest 0.01 for use in the 

experiments.  In Condition 1 (information gain versus probability gain), the original optimizations 

produced values such as P(f1|a) = 0.04, P(f1|b) = 0.38, P(g1|a) = 0.57, and P(g1|b) = 0.  These values 

confounded the possibility of knowing for sure with the desired comparison of information gain and 

probability gain.  (Whereas our desired test was between information gain and probability gain, only G 

offered the possibility of a certain result.  If participants wished to maximize probability of a certain 

result, and hence preferred G, this could have been misinterpreted as a preference to optimize information 

gain.)  We therefore repeated the optimization, requiring P(f1|a) = 0, just as P(g1|b) = 0.  This removed 

that confound while having negligible effect on strength of disagreement.  The same confound appeared 

in Condition 2, and was also remedied by requiring P(f1|a) = 0.  In Experiment 3 an environment along 

these lines where P(f1|a) = 0.04 was tested; results continue to favor probability gain. 

Pairwise optimizations of each OED model vs. the probability of certainty heuristic resulted in 

virtually identical feature likelihoods.  In Condition 4, we therefore optimized the disagreement strength 

of probability of certainty versus the joint preference of all three OED models.  (We defined the joint 

preference of the OED models as the geometric mean of their individual preference strengths.)  A further 

note is that this optimization produced features for which P(f1|a) = ε, and P(f1|b) = 1- ε, where ε ≈ 0.0001.  

Unfortunately, the difference between P(f1|a) = 0 and P(f1|a) = 0.0001, though important for the 

probability of certainty model, is not learnable in two hours of experience-based training with natural 

sampling.  We therefore redid this optimization, fixing F such that P(f1|a) = 0.05, and P(f1|b) = 0.95. 

In the optimizations (see Table 1 in the article), a feature where P(f1|a) = 4/7 ≈ 0.57, and P(f1|b) = 

0, occurred frequently.  This may be because, holding P(a) = 0.70 and P(f|b) = 0 constant, P(f|a) = 4/7 is 

the highest feature likelihood such that the feature has zero probability gain.  In Condition 1 and 

Condition 2, F is rarely f1 (7% or 9% of the time); but if F=f1, the probability of species b changes from 

30% to 100%.  If F = f2, the probability of species a increases (from 70% to 75% or 77%).  If G=g1, it is 

species a for sure.  However, if G=g2, it is a 50/50 chance whether the species is a or b.  These 

possibilities cancel each other out, such that the overall probability of correct guess is not improved by 

querying G, despite G’s higher information gain and impact.  In Condition 3,  F is f1  12% of the time; if 

F=f1  uncertainty is eliminated; information gain prefers F.  If F=f2 the probability of species a goes from 

70% to 80%, which also reduces uncertainty.  Impact depends on the absolute difference in feature 



Experience matters  30 

likelihoods, which favors G (0.73 - 0.22 = 0.51) over F (0.40 – 0 = 0.40).  In Condition 4, all the OED 

models, which were jointly optimized versus probability of certainty, prefer F, which leads to always 

knowing the true category with high probability, but never for sure.  G leads to knowing the true category 

for sure 40% of the time, but to lower overall probability correct, to higher uncertainty, and to lesser 

absolute change in beliefs 

Experiment notes 

Between 6% and 22% of participants did not reach criterion performance in each condition of 

Experiment 1.  Condition 1 had 13% nonlearners (4/32); Condition 2, 7% (2/30); Condition 3, 22% 

(8/36); and Condition 4, 6% (2/31).  Condition 3 was difficult because one of its stimulus items, which 

occurred less than 1/3 of the time, led to only 57% posterior probability of the most-probable category, 

and thus took a great deal of experience to learn. 

Did subjects learn both features F and G, as intended, or only marginal probabilities involving a 

single feature?  In some conditions, it is theoretically possible to only learn F, and yet to achieve the 

performance criterion.  We therefore analyzed the proportion of optimal responses for each configuration 

of features.  (Optimal is choosing the more-probable species, irrespective of how close the posterior 

probability is to 50%, given a particular configuration.  This is true irrespective of which utility a person 

wishes to optimize in the information-acquisition phase.)  We present data for Experiment 1, Condition 1, 

below; this is representative of the conditions where it is theoretically possible to only learn the F feature. 

If subjects only learned the F feature, then the green line ('certain-a config,' f2,g1) and the blue 

line ('uncertain-a config,' f2,g2) would be overlaid, except for random jitter, throughout learning, as these 

configurations differ only along the F feature.  The results, however, show that subjects differentiated 

these configurations, quickly mastering the certain-a configuration, yet struggling with the uncertain-a 

configuration until very late (e.g. the last 4% of learning trials) in the learning process. 
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Figure S1. Aggregate learning data for Experiment 1, Condition 1.   

The difference between the green line (top), for the certain-a configuration (f2,g1), and the blue line (bottom), 

for the uncertain-a configuration (f2,g2), demonstrate that subjects learned configurally.  The red line depicts 

the certain-b (f1,g2) configuration. 

Because different subjects learned in different numbers of trials, and because different configurations of 

stimuli occurred with different frequencies, the data below are normalized so that the first 1/25th (4%) of trials 

on a particular configuration is plotted first, the second 4% of trials on a particular configuration is plotted 

second, etc., for each subject.  In this way, rare stimuli and frequent stimuli, and subjects who learned quickly 

and slowly, contribute equally to the proportion of optimal responses denoted at each point in learning.  (Note 

that the figure requires color.) 

 

What do individual subjects data show?  Figure S2 shows every learning trial for each subject in 

Experiment 1, Condition 1.  Each of the 28 rows represents a single subject.   

Note the greatly higher rates of suboptimal responding to the uncertain-a configuration (left 

column), versus the certain-a configuration (middle column), which differ only according to the G 

feature.  This demonstrates that individual subjects separately (configurally) learned each stimulus item, 

and did not only learn marginal probabilities associated with the F feature.  Some subjects vacillate 

between periods of correct and incorrect responding on the uncertain-a configuration, further evidence 

that they perceive the difference between the configurations.   

Could the subjects, once they learned probabilities involving both features and each configuration 

of features, have forgotten those configural probabilities late in learning, before the information-
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acquisition phase?
1
  It was possible to debrief the vast majority of subjects following the experiment; the 

vast majority of these subjects showed high familiarity with environmental probabilities, including the 

fact that various configurations (though both pointing to species a, for instance) had widely varying levels 

of certainty.   

To more systematically evaluate this qualitative result, we subsequently obtained data from an 

additional 13 subjects in the Experiment 1, Condition 1, environment.  (There was one additional 

nonlearner.)  Eleven of thirteen subjects preferentially viewed the F feature, consistent with earlier 

information-acquisition results.  This replication experiment included a new knowledge test page 

(following the information-acquisition phase) in which subjects were explicitly asked, for each kind of 

specimen that appeared, the percent of instances in which it had been species a and b.  Subjects were also 

asked which percent of specimens, overall, were species a and b.  Analysis of individual subjects' results 

(Table S1) shows that the vast majority of subjects were qualitatively very close in their beliefs, 

identifying the more probable species overall, the more probable species given each configuration of 

features, and the approximate certainty induced by each configuration of features.  Thus, subjects 

preferred the F feature given their knowledge of configural environmental probabilities, not because it 

was the only feature that they learned. 

Additional data, describing corresponding analyses of other conditions, are available from the 

first author.  These data show configural learning throughout. 

 

                                                
1 Note that this concern is not a theoretical possibility in some conditions, in which responding optimally 
to all configurations unequivocally implies that a subject effectively differentiates the two features, and 

not just a single feature.  This a theoretical possibility in Experiment 1, Conditions 1 and 2—though it is 

implausible: note from Fig. S1 that such forgetting would have to have occurred in the last 4% or so of 
learning trials.   
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Figure S2  

(at right; notes below)   

Data for learning phase from Experiment 

1, Condition 1, from each of 28 individual 

subjects who obtained criterion 

performance. 

Key: trials are ordered from top to bottom, 

and left to right, in each rectangle.  

Each subject appears on one row; each 

configuration in one column.  Optimal 

responses are depicted in white; 

suboptimal responses are depicted in 

black.  

Left column:  

uncertain-a (f2,g2; 56.9% are Species a);  

Middle column:  

certain-a (f2,g1; 100% are Species a);  

Right column:  

certain-b (f1,g2; 100% are Species b).   

The f1,g1 configuration does not occur in 

this environment. 

The higher suboptimal response rates for 

the uncertain-a configuration (left) than for 

the certain-a configuration (middle) show 

that subjects learned configurations of 

features, and not merely the higher 

probability gain feature.  Suboptimal 

response rates are statistically greater for 

the uncertain-a configuration than the 

certain-a configuration in 26 of 28 

subjects, by both difference-of-proportions 

and bootstrap tests. 
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Table S1.  Subjects show high calibration to the environmental probabilities.   

Item  Individual subjects' probability ratings: 

 

True  

percent 

Median  

rating 

Mean  

rating 
  #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 

P(a|f2,g2) 57 65 67  50 55 99 80 65 54 55 75 75 67 77 55 65 

P(a|f2,g1) 100 100 100  100 100 100 100  95 100 100 100 100 100 100 100 100 

P(a|f1,g2) 0 0 9  0 0 0 0 20 0 0 0 0 0 95 0 0 

P(a)  70 82 80  48 73 90 90 90 79 85 82 75 62 79 94 92 

Note.  The item being judged is in the left column; its true percent next; and the median and mean of subjects' 

estimated percentages next.  Individual subjects (columns #1 to #13, at right) in most cases showed very good 

learning of environmental probabilities.  Whether species a or b was more probable was randomized across subjects.  

In this table, 'a' denotes whichever species was more probable in a particular subject's randomization. 

 



Experience matters  35 

Plankton stimuli 

 The actual plankton stimuli appear below.  Our plankton stimuli, though hopefully naturalistic in 

appearance, should not be confused with real copepods.  (For instance, the claw feature did not occur in 

the original images.)  The stimuli were designed to have three subtly-varying two-valued features (tail, 

eye, claw), roughly equidistant from each other.  We thank Profs. Jorge Rey and Sheila O’Connell 

(University of Florida, Medical Etymology Laboratory), for allowing us to base our artificial plankton 

stimuli on their photographs of real copepod plankton specimens.   

 

 

 

 

Figure S3.  Example plankton stimuli, from learning phase.  Specimen at 

top has fine tail, blurry eye, and unconnected claw.  Specimen at bottom 

has blunt tail, dotted eye, and connected claw 
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Figure S4.  Example plankton stimulus, from information-acquisition 

phase, with eye and claw obscured. 

 

 

 

 

 

 

 

Figure S5.  The two versions of each plankton feature: blunt or fine claw (left); 

blurry or dotted eye (middle), and unconnected or connected claw (right) 

 


