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Abstract

When participants assess the relationship between two variables, each with levels of presence and
absence, the two most robust phenomena are that: (a) observing the joint presence of the variables
has the largest impact on judgment and observing joint absence has the smallest impact, and (b) par-
ticipants’ prior beliefs about the variables’ relationship influence judgment. Both phenomena repre-
sent departures from the traditional normative model (the phi coefficient or related measures) and
have therefore been interpreted as systematic errors. However, both phenomena are consistent with
a Bayesian approach to the task. From a Bayesian perspective: (a) joint presence is normatively more
informative than joint absence if the presence of variables is rarer than their absence, and (b) failing

to incorporate prior beliefs is a normative error. Empirical evidence is reported showing that joint
absence is seen as more informative than joint presence when it is clear that absence of the variables,
rather than their presence, is rare.
� 2006 Elsevier Inc. All rights reserved.
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Although reasoning and decision making errors are often reported (e.g., Evans, New-
stead, & Byrne, 1993; Gilovich, Griffin, & Kahneman, 2002; Kahneman & Tversky,
2000), they are often disputed as well. For example, sometimes it is argued that partici-
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pants construe tasks differently than experimenters (Hilton, 1995; Schwarz, 1996), that
many errors are limited to (or at least exacerbated by) the laboratory environment (Ander-
son, 1990, 1991; Klayman & Ha, 1987; McKenzie, 2003, 2004a, in press; McKenzie &
Mikkelsen, 2000; McKenzie & Nelson, 2003; Oaksford & Chater, 1994, 1996, 2003),
and that some purported errors are consistent with an alternative normative standard
(Anderson, 1990, 1991; Chase, Hertwig, & Gigerenzer, 1998; Gigerenzer, 1991, 1996; Gige-
renzer et al., 1999; McKenzie, 2004a; Sher & McKenzie, in press; Oaksford & Chater,
1994, 1996, 2003). In this article, we invoke all of the above arguments to explain robust
‘‘errors’’ in covariation assessment.

Assessing how variables covary underlies such fundamental behaviors as learning (Hil-
gard & Bower, 1975), categorization (Smith & Medin, 1981), and judging causation
(Cheng, 1997; Cheng & Novick, 1990, 1992; Einhorn & Hogarth, 1986), to name just a
few. Crocker (1981) noted that people’s ability to accurately assess covariation allows
them to explain the past, control the present, and predict the future. It is hard to imagine
a more important cognitive activity and, accordingly, much research has been devoted to
this topic since the groundbreaking studies of Inhelder and Piaget (1958) and Smedslund
(1963; for reviews, see Allan, 1993; McKenzie, 1994).

Despite the important role that covariation assessment plays in people’s daily lives,
most research over the last four decades examining performance with two binary vari-
ables—presumably the simplest possible case—has concluded that people are surprisingly
poor at the task. Two robust findings have stood out over the years. One is that partici-
pants do not treat the four cells of a 2 · 2 contingency matrix as equally important, espe-
cially when both variables have levels of presence and absence. In particular, observing the
joint presence of variables has the largest impact on judgments, and observing their joint
absence has the smallest impact (e.g. Levin, Wasserman, & Kao, 1993; Kao & Wasserman,
1993; Lipe, 1990; Schustack & Sternberg, 1981; Wasserman, Dorner, & Kao, 1990). The
second robust finding is that participants’ prior beliefs about a relationship influence judg-
ments of covariation (e.g. Alloy & Tabachnik, 1984; Chapman & Chapman, 1967, 1969;
Crocker, 1981; Jennings, Amabile, & Ross, 1982; Nisbett & Ross, 1980; Peterson,
1980). Both of these findings represent departures from the traditional normative model
and have therefore usually been interpreted as shortcomings in participants’ ability to
assess covariation.

We present a nontraditional view of both the covariation task and participants’ behav-
ior. Generally, we argue that participants approach the task from an inferential perspective
rather than from the traditional descriptive (in the statistical sense) perspective (see also
Griffiths & Tenenbaum, 2005). The traditional view is that the participant’s task is to pro-
vide a summary of the presented four cell values and, therefore, any additional real-world
knowledge is irrelevant. Our view is that participants naturally adopt an inferential
approach and attempt to determine the likelihood that there is a relationship between
the variables. Furthermore, participants exploit their knowledge related to the inferential
task that makes sense outside the laboratory. More specifically, a Bayesian account can
naturally explain why participants are influenced by prior beliefs about the relation to
be assessed and why the four cells are seen as differentially informative. The former phe-
nomenon is the hallmark of Bayesian statistics and therefore fits naturally with the current
perspective. The latter phenomenon, differential cell informativeness, is due to partici-
pants’ knowledge, or assumptions in the case of impoverished laboratory stimuli, about
which of the four types of observations are rare. From a Bayesian perspective, observing
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the conjunction of two events is informative to the extent that the events are rare (e.g. Hor-
wich, 1982; Howson & Urbach, 1989). We will show that, unless there is good reason to
believe otherwise, participants assume (probably tacitly) that the presence of variables is
rare, and that is why joint presence has the largest influence on behavior and joint absence
has the smallest influence. These two Bayesian principles—incorporating prior beliefs and
finding conjunctions of rare events more informative than conjunctions of common ones—
can account for a large amount of research that asks participants for a summary judgment
of covariation between two binary variables.

We want to make clear from the outset that our Bayesian account neither assumes nor
implies that people are Bayes-optimal processors of information. In addition to the wealth
of evidence indicating that people are not optimal Bayesians (e.g. McKenzie, 1994), Bayes-
ian models are notorious for their enormous complexity when applied to real-world prob-
lems, making them unlikely candidates for models of psychological processes. Even Pearl’s
(1988) Bayesian network approach to modeling human inference, meant to avoid such
‘‘scaling up’’ problems, has been deemed unmanageable for even moderately complex
problems (Dagum & Luby, 1993). In contrast to these quantitative approaches, however,
our account simply assumes that people take into account their prior beliefs and event rar-
ity in qualitatively appropriate ways when assessing covariation. We will show that there is
strong evidence that both of these Bayesian principles are used in lay covariation
assessment.

Others have argued for various aspects of a Bayesian account of covariation assessment
(or closely related tasks). Most relevant is Anderson (1990), who adopted a Bayesian per-
spective of inferring causation between two binary variables and was the first (to our
knowledge) to note that observing the joint presence of variables might be normatively
more informative than observing their joint absence because presence is rare. His insight-
ful analysis is in many ways more detailed than ours, but his account has, we believe, failed
to convey the important message that simple Bayesian principles can explain covariation
behavior. Part of the reason for this is that his ‘‘rational analysis’’ assumes that organisms
are optimally adapted to their environment (given minimal assumptions about processing
limitations), which led, in our opinion, to two closely related shortcomings: Many find
implausible the idea that people are optimal Bayesians (as noted above), and the resulting
model was complicated and lacked intuitive appeal. It will become evident that we do
believe that cognition is influenced by the structure of the environment, or ‘‘how the world
usually works,’’ but we do not assume that the adaptation is optimal. This will be reflected
in our qualitative, rather than quantitative, Bayesian approach.

Two other important differences between our approach and Anderson’s deserve men-
tion. The first is that Anderson (1990, 1991; Anderson and Sheu, 1995) did not bolster
the Bayesian account by pointing to the many studies showing that prior beliefs influence
covariation judgments, which we will do later in this article. The second is that Anderson’s
(1990, 1991) rational analysis is concerned with whether cognition is adaptive, whereas we
are also concerned with whether it is adaptable (Klayman & Brown, 1993; McKenzie,
2005; McKenzie & Mikkelsen, 2000). By ‘‘adaptive,’’ we mean that behavior reflects cer-
tain (largely invariant) aspects of the environment. We take Anderson’s (1990, 1991;
Anderson and Sheu, 1995) argument regarding the fact that presence tends to be rare to
be an argument that the ‘‘bias’’ for joint presence over joint absence is adaptive. However,
despite its importance, Anderson’s account remains post hoc and appears mute regarding
the important question of whether covariation behavior is adaptable—that is, whether
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behavior changes appropriately when it is clear that the situation is atypical. In particular,
the question arises as to whether participants will find joint absence more informative than
joint presence if it is clear that absence, rather than presence, is rare. The answer to this
question—which we provide later—is crucial for establishing the Bayesian perspective
as a testable account that leads to new predictions rather than just an intriguing post
hoc rationalization of biases in covariation judgment.

Fales and Wasserman (1992) entertained the possibility that a Bayesian approach might
explain human causal inference, pointing out, for example, that observed learning curves are
consistent with the approach. However, because they contrasted Bayes with Rescorla and
Wagner’s (1972) model of associative learning, they emphasized situations in which multiple
predictor variables compete with each other to explain another outcome variable, whereas
the current focus is on just two variables (i.e., one predictor and one outcome variable). Fur-
thermore, Fales and Wasserman were concerned with neither the differential informative-
ness of the four cells nor the influence of prior probabilities on learning causal relations.

Recently, Griffiths and Tenenbaum (2005) also argued for a Bayesian account of infer-
ring causation between two binary variables. They successfully explained patterns in caus-
al judgments that other theories could not, thereby lending considerable credence to a
Bayesian perspective. For example, they showed that simply manipulating sample size
(by multiplying all cell frequencies by a constant) affected judgments in the predicted man-
ner. Like Fales and Wasserman (1992), however, Griffiths and Tenenbaum (2005) were not
concerned with explaining joint presence bias and the influence of prior beliefs. Further-
more, their model’s predictions were based entirely on the frequencies in the 2 · 2 matrices
presented to participants, whereas we will show that participants’ knowledge beyond cell
frequencies is important. Griffiths and Tenenbaum’s model could be augmented to incor-
porate such knowledge, however.

Cheng (1997) also presented a normative (albeit non-Bayesian) view of inferring causa-
tion. Though our focus is on covariation rather than causation, her model also indicates that
joint presence is normatively more informative than joint absence. Importantly, though,
considerations of rarity do not play a role in her conclusion regarding differential cell impor-
tance. Hence, unlike our account, Cheng’s does not predict that joint absence will be seen as
more informative than joint presence when it is clear that absence of the variables is rare.

Also relevant is Alloy and Tabachnik (1984), who reviewed a large number of covari-
ation studies and concluded not only that prior beliefs influenced covariation assessment,
but also that this was normatively justifiable. However, despite their focus on prior beliefs,
the authors did not adopt a Bayesian perspective, and they ended up treating prior beliefs
as a layer to be added to the traditional normative model. This forced the authors to make
an awkward distinction between being ‘‘accurate’’—reporting judgments in accord with
the traditional normative model—and being ‘‘rational’’—incorporating prior beliefs.
There is no need to make such a distinction within a Bayesian framework: Incorporating
prior beliefs is rational precisely because doing so increases accuracy (assuming that the
prior beliefs are reasonably accurate). An additional important difference between the cur-
rent perspective and that of Alloy and Tabachnik’s is that the latter did not attempt to
account for why the four cells are perceived by participants as differentially informative.

The rest of the article is organized as follows. In the first part, we describe the type of
covariation task we intend to explain as well as the traditional normative model. The sec-
ond part briefly reviews research on covariation assessment with an eye toward conclu-
sions regarding the dominating influence of variables’ joint presence over their joint
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absence. We then introduce the likelihood portion of Bayes’ theorem, showing that it pre-
dicts that joint presence will be seen as more informative than joint absence when presence
is rare—a condition that, as Anderson (1990) has argued, appears to hold in the real
world. Subsequently, we highlight differences between the traditional and inferential views
of the task. Next, some recent research is summarized indicating that participants are
highly sensitive to the rarity of data when making inferences, as they should be from a
Bayesian perspective. Two experiments then test the prediction that joint absence will
be seen as more informative when absence, rather than presence, is rare. We subsequently
point out the natural fit between the Bayesian viewpoint and the large body of data show-
ing that prior beliefs influence covariation assessment. Finally, we discuss the contribution
of our analysis and data to the current debate regarding human rationality.

1. The traditional covariation task and the traditional normative model

In the typical covariation task we are concerned with, there are just two variables, each
with levels of presence and absence, creating the familiar 2 · 2 contingency matrix. Such a
matrix is depicted in Fig. 1 for Variables X and Y. Cell A corresponds to the joint presence
of the variables, Cell B to the presence of X and the absence of Y, Cell C to the absence of
X and the presence of Y, and Cell D to the joint absence of the variables. Imagine, for
example, being presented with the following information regarding a treatment and recov-
ery from an illness: 15 people received the treatment and recovered (Cell A), 5 people
received the treatment and did not recover (Cell B), 9 people did not receive the treatment
and recovered (Cell C), and 3 people did not receive the treatment and did not recover
(Cell D). Sometimes the observations are presented sequentially, while other times the
information is summarized (as above). Participants might be asked to assess the strength
of the relation given the four cell values, or they might be asked which of two matrices
shows a stronger relation. A model considered normative in this context is the phi coeffi-
cient: u = (AD � BC)/[(A + B)(C + D)(A + C)(B + D)]1/2, where A, B, C, and D corre-
spond to the respective cell values. A simpler model, Dp = [A/(A + B)] � [C/(C + D)], is
often substituted (Allan, 1980). Phi is a special case of Pearson’s product-moment corre-
lation coefficient, ranging between �1 and 1. To the extent that the coefficient is close to 1
(�1), there is a strong positive (negative) relation between the variables: Y is more (less)
likely to be present when X is present rather than absent. When u = 0, as in the above
example, X and Y are independent. Note that u and Dp are descriptive statistics in that
they are simply summaries of the presented information. No information beyond the four
cell frequencies is considered relevant. If any additional information or beliefs were to
influence judgment, this would be considered an error from the traditional perspective.
Variable X

Variable Y

Present

Absent

Present Absent

Cell A Cell B

Cell C Cell D

Fig. 1. The four cells of a 2 · 2 contingency matrix.
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2. Past research on differential cell impact

Probably the most robust finding in the covariation literature is that participants do not
treat the four cells as equally important. In particular, observing the joint presence of the
variables has the largest impact on judgments, and observing their joint absence has the
smallest impact. This has been shown by regressing strength judgments onto cell frequen-
cies (Mandel & Lehman, 1998; Schustack & Sternberg, 1981), by asking participants
directly which cells are most important (Crocker, 1982; Wasserman et al., 1990), by infer-
ring cell importance and/or which rule participants use based on patterns of responses
(Arkes & Harkness, 1983; Kao & Wasserman, 1993; Levin et al., 1993; Shaklee & Mims,
1982; Shaklee & Tucker, 1980; Ward & Jenkins, 1965; Wasserman et al., 1990), and by a
meta-analysis of covariation research (Lipe, 1990). The impacts of Cells B and C, which
are sometimes equivalent to each other, fall between that of A and D (Crocker, 1982;
Kao & Wasserman, 1993; Levin et al., 1993; Lipe, 1990; Wasserman et al., 1990). Because
the clearest empirical difference is between the impact of Cells A and D, these two cells are
the focus of this article, both theoretically and empirically.

Because the four cells are equally important in calculating u (more on this below), dif-
ferential impact of the four cells has been routinely interpreted as nonnormative. For
example, Kao and Wasserman (1993) state that, ‘‘It is important to recognize that unequal
utilization of cell information implies that nonnormative processes are at work’’ (p. 1365),
and Mandel and Lehman (1998) attempted to explain differential cell informativeness in
terms of a combination of two reasoning biases. However, based on normative Bayesian
principles, the following approach naturally accounts for, among other things, the prefer-
ence for joint presence over joint absence.

3. A Bayesian view of the four cells’ informativeness

Assume for the moment that participants, rather than viewing the task as one of
description, naturally approach it as one of inference, in which they are attempting to
use the cell information to distinguish between two mutually exclusive hypotheses about
a larger population of instances. For illustrative purposes, assume that one hypothesis,
H1, corresponds to a moderate positive contingency between X and Y, q = 0.5 (where q
is the population’s hypothesized u), and that the alternative hypothesis, H2, corresponds
to noncontingency, q = 0. That is, assume that participants are trying to determine how
likely it is that there is a moderate contingency between the variables rather than none
(see also Griffiths & Tenenbaum, 2005).

Now we can ask how informative each of the four possible observations is under these
conditions. One way to measure the informativeness of data is to calculate how well they
help distinguish between the hypotheses under consideration (see, e.g. Nelson, 2005),
which is quantified using likelihood ratios. The numerator of a likelihood ratio corre-
sponds to the probability of observing the data assuming that H1 is true, and the denom-
inator to the probability of observing the same data assuming that H2 is true. A datum is
diagnostic to the extent that its likelihood ratio differs from 1. In the case of a Cell A
observation, the likelihood ratio is p(A|H1)/p(A|H2). Because H2 is q = 0—that is, X

and Y are independent—p(A|H2) = p(X)p(Y), where p(X) and p(Y) correspond to the rel-
ative frequency, or the subjective probability, of the presence of each of the variables, X

and Y. Similarly, p(B|H2) = p(X)[1 � p(Y)], p(C|H2) = [1 � p(X)]p(Y), and p(D|H2) =
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[1 � p(X)][1 � p(Y)]. Assume that p(X) = p(Y) = .1; that is, the presence of each variable is
rare. The denominator of the likelihood ratio for A, B, C, and D observations equals 0.01,
0.09, 0.09, and 0.81, respectively.

What about the numerators? For q = 0.5 (H1), the respective numerators equal 0.055,
0.045, 0.045, and 0.855.1 Thus, the likelihood ratios corresponding to A, B, C, and D
observations are 5.5, 0.5, 0.5, and 1.06, respectively. The fact that the likelihood ratios
for A and D observations are greater than 1 demonstrate that they are evidence in favor
of H1, and the likelihood ratios of less than 1 for B and C observations indicate that they
are evidence in favor of H2. We will be dealing with situations in which the qualitative
impact of each observation is clear (A and D observations always favor one hypothesis,
and B and C the other) and will concentrate on how informative a given observation is,
regardless of the hypothesis it favors. The measure of informativeness we will use is the
absolute log likelihood ratio (|LLR|):

jLLRjj ¼ Absðlog2½pðjjH1Þ=pðjjH2Þ�Þ;
where j corresponds to A, B, C, or D. The larger |LLR| is, the more informative the obser-
vation. When LLR = 0, the observation is completely uninformative. |LLR| equates a like-
lihood ratio and its inverse and is a commonly used measure of informativeness in
Bayesian hypothesis testing (e.g. Evans & Over, 1996; Good, 1983; Klayman & Ha, 1987).

For the A through D observations in this example, then, |LLR| equals 2.46, 1.0, 1.0, and
0.08, respectively. Given the above assumptions, a Cell A observation is most informative,
a Cell D observation is least informative (indeed, it is virtually uninformative), and Cells B
and C fall in between. This is, of course, consistent with the robust empirical finding that
A > B � C > D. However, several assumptions were made in the above analysis, including
H1 was q = 0.5, H2 was q = 0, and p(X) = p(Y) = 0.1. For simplicity, we also treated u as
an unbiased estimator of q, although it is not. How sensitive to these assumptions is the
result that |LLRA| > |LLRD|? If the marginal probabilities, p(X) and p(Y), do not change
under the competing hypotheses, then the competing hypotheses are irrelevant. All that is
necessary for a Cell A observation to be more informative than a Cell D observation is
that p(X) < 1 � p(Y) (Horwich, 1982; Mackie, 1963; McKenzie & Mikkelsen, 2000). Cell
D observations are more informative than Cell A observations when p(X) > 1 � p(Y)
(see also Over & Green, 2001; Over & Jessop, 1998). As we show in Appendix A, they
are equally informative only when p(X) = 1 � p(Y).2

Given that participants’ preference for Cell A to Cell D would be rational in an infer-
ential task if X and Y were rare (see also Anderson, 1990), it is natural to wonder whether
1 After calculating the cell values for the independent case (u = 0), cell values for a different value of u can be
calculated by multiplying that u value by its denominator (the square root of the product of the four marginal
probabilities; see text for calculating u). Relative to the values in the independent case, add this product to the A

and D values and subtract this product from the B and C values. Using the example in the text, 0.5 · (.12 · .92)1/2

= 0.045. Thus, the Cell A value for u = 0.5 is 0.01 + 0.045 = 0.055, and the Cell D value = 0.81 + 0.045 = 0.855.
Subtracting the product from the Cell B and C values for the independent case yields: 0.09 � 0.045 = 0.045 for
both cells. Calculating u with these new cell values yields 0.5. The new cell values are the only ones that will yield
the desired level of u with these marginal probabilities.

2 The relative informativeness of Cells B and C, which provide evidence against a positive relationship, is also
determined by p(X) and p(Y) and is independent of the competing hypotheses. When p(X) = p(Y), Cells B and C
are equally informative. Cell B is more informative than Cell C when p(X) < p(Y), and Cell C is more informative
than Cell B when p(X) > p(Y).
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the X’s and Y’s people talk and think about in the real world are indeed rare. That is, does
a variable that can either be present or absent tend to be absent more often than present?
The answer will depend on the specific circumstances, but we believe that, for the vast
majority of variables, the answer is yes. Most things are not red, most things are not mam-
mals, most people do not have a fever, and so on. It is important to note that we are mak-
ing a claim about how people use language, not about metaphysics. Imagine two terms,
‘‘X’’ and ‘‘not-X’’ (e.g., red things and non-red things, accountants and non-accountants),
where there is no simple, non-negated term for not-X. Which would be the larger category,
X or not-X? We believe that not-X will be the larger category in the vast majority of cases.
It seems plausible that people have learned through a lifetime of experience that the pres-
ence of properties is rarer than their absence, and that therefore observing the joint pres-
ence of variables is usually more informative than observing their joint absence when
determining whether the variables are related. A ‘‘bias’’ for Cell A observations in the lab-
oratory might reflect deeply rooted tendencies that are highly adaptive outside the
laboratory.

The four panels in Fig. 2 show the respective cells’ informativeness (|LLRj|) as a func-
tion of p(X) and p(Y), which were orthogonally manipulated between 0.1 and 0.9 in steps
of 0.1 (resulting in 81 data points in each panel). H1 was q = 0.1 and H2 was q = 0. (The
low q value for H1 was used because there are low upper bounds on q when one of p(X) or
p(Y) is low and the other is high.) The cells’ informativeness is determined by p(X) and
p(Y). The top left panel shows that a Cell A observation is most informative when p(X)
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Fig. 2. Simulation results showing the log likelihood ratio (|LLRj|) of each of the four cells as a function of p(X)
and p(Y).



C.R.M. McKenzie, L.A. Mikkelsen / Cognitive Psychology 54 (2007) 33–61 41
and p(Y) are both low; the top right panel shows that Cell B is most informative when p(X)
is low and p(Y) is high; the bottom left shows that Cell C is most informative when p(X) is
high and p(Y) is low; and the bottom right panel shows that Cell D is most informative
when p(X) and p(Y) are both high. Though there are conditions under which each of
the cells is most informative, the claim here is that X and Y tend to be rare. Under these
conditions, Cell A is most informative, Cell D is least informative, and Cells B and C fall
in between (see also Anderson, 1990, pp. 149–160).

Of course, one can make virtually any behavior appear rational by adding post hoc
assumptions, and therefore caution is warranted. On the other hand, a simple normative
account of a large literature should not be ignored. Furthermore, we do more in this article
than posit that participants behave as though they assume that presence is rare. Later, we:
(a) review recent findings showing that participants are highly sensitive to event rarity in
inference tasks, (b) present new data demonstrating that Cell D is perceived as most infor-
mative when it is clear that absence is rare, and (c) use the general Bayesian approach to
account naturally for the robust finding that prior beliefs influence judgments of covaria-
tion. First, though, more needs to be said about differences between the traditional and
inferential views.

4. The traditional and inferential views of covariation assessment

Because the traditional view of covariation assessment is concerned with the direction
and/or strength of the relation between the two variables, given the four cell frequencies,
the usual claim is that all cells are equally important. Even within the traditional frame-
work, however, a new A or D observation can have a different impact on u (and Dp)
depending on the marginal frequencies (relative to N = A + B + C + D), or p(X) and
p(Y). A new A or D observation has the same impact on u only when p(X) + p(Y) = 1
for the matrix at hand. Furthermore, a new A observation will have more impact than
a D observation on u whenever p(X) + p(Y) < 1 and will have less impact when
p(X) + p(Y) > 1. For example, consider the matrix with A through D values of 1, 9, 9,
and 81, respectively. For this matrix, u = 0 and p(X) + p(Y) = .1 + .1 = .2. Adding one
Cell A observation leads to a greater increase in u than adding one Cell D observation:
u = 0.08 in the former case and 0.001 in the latter. Even though the traditional normative
model can be differentially influenced by adding an observation to different cells when
p(X) + p(Y) differs from 1, participants are often shown many different matrices that con-
trol for marginal frequencies and, averaging across the matrices, it is found that Cell A has
the largest influence on judgments (e.g. Levin et al., 1993; Mandel & Lehman, 1998).

An important difference between the traditional view and our inferential view is that
p(X) and p(Y) in the former view depend entirely on the matrix at hand, whereas p(X)
and p(Y) in the latter view are based on learning prior to receiving the current matrix
of information (though these beliefs could be influenced by the new information). For
example, imagine a participant presented with a matrix in which all four cell frequencies
were 5, and thus p(X) + p(Y) = 1. According to the traditional view, the normative
response is that there is no relation between X and Y and, furthermore, a subsequent A
or D observation should have equal impact on judgment. This would not necessarily be
true from the inferential viewpoint, however, depending on the participant’s beliefs (per-
haps implicit) about p(X) and p(Y) beyond the current matrix information. If a participant
generally believes that presence is rare, and therefore p(X) + p(Y) < 1 (in the larger popu-
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lation of interest), then the 5 Cell A observations are more informative than the 5 D obser-
vations and might well be ‘‘overweighted.’’ Similarly, a subsequent A observation will
have more impact than a subsequent D observation. In contrast, if the participant believed
that the absence of X and Y was rare, then the 5 Cell D observations, and any subsequent
Cell D observations, might have the largest impact on behavior.

A complication arises when comparing the traditional and inferential views in that they
seem to imply that different dependent measures are appropriate for the task. The tradi-
tional view leads to asking participants questions such as ‘‘How strong is the relation
between X and Y?’’, whereas the inferential view leads to questions such as ‘‘How strong
is this evidence for a relation between X and Y?’’, or ‘‘How confident are you that X and Y

are related?’’ The objection might be raised that traditional tasks ask about strength of
relation, a descriptive (statistical) question, and participants should respond accordingly.
But, of course, one of our main points is that participants view the task differently than
experimenters, and what is important is how participants, not experimenters, construe
the task (see also Hilton, 1990, 1995; McKenzie, 2003, 2005; Oaksford & Chater, 1994;
Schwarz, 1996; cf. Stanovich, 1999; Stanovich & West, 2000). If it is naturally construed
in the inferential manner put forth here, then it might be difficult for participants to ignore
the differential informativeness of the cells when rating descriptive strength. Consistent
with this, Wasserman et al. (1990) found that even participants who claimed that the four
cells were equally important exhibited Cell A bias when reporting strength judgments (see
also Mandel & Lehman, 1998). That is, these participants appear to have, in a sense,
accepted the experimenters’ traditional view of the task, but they nonetheless behaved
in a manner consistent with the current inferential approach. Indeed, the experiments
we report later will show that participants’ ostensibly descriptive judgments are influenced
by normatively relevant inferential factors.

5. Evidence regarding sensitivity to event rarity in inference tasks

We mentioned earlier that Anderson (1990) argued that Cell A ‘‘bias’’ is adaptive
(from a Bayesian perspective) because the presence of variables is rare. Though impor-
tant, this account remains a post hoc explanation of differential sensitivity to the cells.
To show that the Bayesian account goes beyond that, it needs to be demonstrated that
participants’ covariation behavior is adaptable with respect to rarity. If there already
exists evidence that participants are sensitive to event rarity in the predicted manner
when making inferences in other tasks, this would increase the plausibility of the Bayes-
ian account of covariation assessment. Indeed, recent results show that participants are
sensitive to the rarity of observations in a variety of inference tasks (Feeney, Evans, &
Clibbens, 2000; Green & Over, 2000; Green, Over, & Pyne, 1997; Kirby, 1994; McKen-
zie, 2004a; McKenzie & Amin, 2002; McKenzie & Mikkelsen, 2000; Oaksford & Chater,
1994, 2003; Oaksford, Chater, Grainger, & Larkin, 1997; Oaksford, Chater, & Grainger,
1999; Oaksford & Wakefield, 2003). Rarity appears to play a crucial role in human
inference, and this makes sense given that rarity plays a crucial role in normative theo-
ries of hypothesis testing (Poletiek, 2001). In fact, results have indicated (and the exper-
iments reported later in this article will provide further evidence) that even when
experimenters present participants with abstract, unfamiliar materials in the hope of
eliminating ‘‘real world’’ intrusions, participants merely fall back on default assumptions
about what is rare.
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One example demonstrating participants’ sensitivity to rarity comes from McKenzie
and Mikkelsen (2000), who asked participants to test hypotheses of the form, ‘‘If X1, then
Y1.’’ Each variable, X and Y, had exactly two levels (X1 and X2, Y1 and Y2). For example,
some participants tested the hypothesis, ‘‘If a person has genotype A, then that person has
personality type X,’’ and they were told that everyone has either genotype A or B and
either personality type X or Y. Participants were then presented with an X1 and Y1 obser-
vation and an X2 and Y2 observation (e.g., a person with genotype A and personality type
X and a person with genotype B and personality type Y)—both of which support the
hypothesis—and asked which provided stronger support. Decades of hypothesis-testing
research have shown that participants overwhelmingly prefer confirming observations
mentioned in the hypothesis (X1 and Y1 observations) to confirming observations that
are not mentioned (X2 and Y2 observations). This phenomenon, which might be related
to the preference for Cell A to Cell D information, has been referred to in various hypoth-
esis-testing contexts as ‘‘confirmation bias,’’ ‘‘matching bias,’’ and ‘‘positive testing’’ (e.g.
Evans, 1989; Fischhoff & Beyth-Marom, 1983; Klayman & Ha, 1987; McKenzie, 1994,
2004b; see also McKenzie, 1998, 1999; McKenzie, Wixted, Noelle, & Gyurjyan, 2001).
McKenzie and Mikkelsen (2000) also found this phenomenon—but only when the hypoth-
esis being tested regarded unfamiliar variables and there was no information regarding the
rarity of the observations. When told that X1 and Y1 were common relative to X2 and Y2,
more participants correctly selected the X2 and Y2 observation as more supportive. Even
stronger results were found when familiar variables were used and participants presumably
knew which levels of the variables were rare. For example, participants testing the hypoth-
esis, ‘‘If a person is HIV�, then that person is mentally healthy,’’ were more likely to select
the rare, and hence more informative, observation—a person who is HIV+ and psychot-
ic—even though the observation was not mentioned in the hypothesis. The combination of
familiar variables and a ‘‘reminder’’ that X1 and Y1 were common led participants to cor-
rectly select the X2 and Y2 observation more often than the X1 and Y1 observation, even
though they were testing ‘‘If X1, then Y1.’’

Another example of the influence of rarity on behavior comes from Wason’s selection
task, in which participants are presented with four cards, each of which has either X1 or
X2 on one side and Y1 or Y2 on the other. For each card, only one side is showing; X1, X2,
Y1, and Y2 each face up on one card. Participants have to decide which cards to turn over
to test the hypothesis, ‘‘If X1 appears on one side, then Y1 appears on the other.’’ For
example, participants might test the rule, ‘‘If there is a vowel on one side of the card, then
there is an even number on the other side,’’ with the four cards showing A, K, 2, and 7.
Each card has a letter on one side and a number on the other. Which cards are necessary
to turn over to see if the rule is true or false? According to one interpretation of the rule,
propositional logic dictates that the X1 and Y2 cards should be turned over (A and 7 in the
example). A common finding, though, is that participants want to turn over the cards men-
tioned in the rule: the X1 and Y1 cards (A and 2 in the example; e.g. Wason, 1966, 1968).
This has been widely regarded as a classic example of irrational behavior. However, Oaks-
ford and Chater (1994, 1996; see also Nickerson, 1996; Over and Jessop, 1998) have shown
that, from a Bayesian perspective (in which the available cards are sampled from a larger
population to which the rule is to be generalized), the X1 and Y1 cards are the most infor-
mative for testing the rule—if one assumes that X1 and Y1 are rare relative to X2 and Y2
(the ‘‘rarity assumption’’). As predicted by this account, participants presented with a
reduced array selection task, where only the Y1 and Y2 cards are present, were more likely
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to select the Y2 card as it became rarer (Oaksford et al., 1997; see also Green & Over, 2000;
Green et al., 1997; Oaksford & Chater, 2003; Oaksford et al., 1999; but see Oberauer, Wil-
helm, & Diaz, 1999). Note that, like the present article, Oaksford and Chater (1994)
offered a Bayesian account of a task traditionally seen in non-Bayesian normative terms.

McKenzie, Ferreira, Mikkelsen, McDermott, and Skrable (2001) provided empirical
evidence supporting the rarity assumption: They found that participants tended to phrase
conditional statements (or hypotheses) in terms of rare, rather than common, events.
Thus, people might consider mentioned confirming observations most informative, or con-
sider turning over the mentioned cards most informative, because they usually are most
informative, at least from a Bayesian perspective.

While these results are encouraging with respect to reversing the Cell A bias, it should
be kept in mind that the covariation task is different from the selection task and from
McKenzie and Mikkelsen’s (2000) hypothesis-testing task. In the selection task, partici-
pants must select cards to turn over, and they cannot be sure what will be on the other
side. McKenzie and Mikkelsen’s (2000) hypothesis-testing task is more similar to a covari-
ation task, but an important difference is that the variables to be tested had symmetric lev-
els such as ‘‘genotype A’’ and ‘‘genotype B,’’ rather than the traditional asymmetric levels
of ‘‘present’’ and ‘‘absent’’ as in most covariation tasks. Much evidence has shown that
participants have trouble reasoning with variables that are absent or negated (e.g. Wason
& Johnson-Laird, 1972; Evans et al., 1993), making it unclear whether McKenzie and
Mikkelsen’s (2000) hypothesis-testing results will generalize to covariation assessment.
In addition, instructions differ between the tasks. In hypothesis-testing tasks and selection
tasks, participants are often asked to test ‘‘if-then’’ statements, whereas in covariation
tasks, participants are asked to assess the relationship between variables.

Despite differences between the tasks, people appear highly sensitive to rarity when
making inferences, as they should be according to the Bayesian perspective. Evidence from
different areas of research support the prediction that manipulating the rarity of the pres-
ence vs. absence of the variables in a covariation task will influence perceived cell informa-
tiveness. In particular, participants might deem Cell D more informative when absence,
rather than presence, is rare.

6. Experiment 1

Our first experiment manipulated the rarity of the presence of two unfamiliar variables
through a learning manipulation before presenting participants with various covariation
tasks. Half of the participants learned that the presence of both variables was rare, and
half learned that their absence was rare. The prediction was that, relative to the presence
rare group, the absence rare group would view the variables’ joint presence (Cell A) as less
informative and their joint absence (Cell D) as more informative. As mentioned earlier, we
will focus on behavior with respect to Cells A and D because these two cells have tradi-
tionally been shown to have the largest and smallest influence, respectively, on behavior.

6.1. Method

Participants were 160 University of California, San Diego (UCSD) students who
received partial credit for psychology courses. The experiment took place on computer.
Participants were told to imagine that they were researchers studying whether there was
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a relation between a certain genotype and a particular personality trait. They first learned
how common the genotype was by seeing 50 people’s ‘‘profiles.’’ Each profile stated
whether the person had the genotype (yes or no), but there was no information regarding
whether the personality trait was present (indicated by ‘‘?’’). Participants were told that the
purpose was to learn how common the genotype was, and that they would subsequently be
asked how many of the 50 people had the genotype. For half of the participants, the geno-
type was present in 5 out of 50 people (10%) and for the other half of the participants, the
genotype was present in 45 out of 50 people (90%). Each profile (e.g., ‘‘Genotype: Yes/
Trait: ?’’) was presented for 2000 ms followed by a 500 ms delay (blank screen) and a tone.
After seeing the 50 profiles, all participants estimated the number of people out of 50 who
had the genotype. They were subsequently told the correct number of people with the
genotype.

Participants then learned about the prevalence of the personality trait. They were again
shown the same 50 people’s profiles (said to be in a different random order), but this time
the presence vs. absence of the personality trait was visible (yes or no), but not the infor-
mation regarding the genotype (‘‘?’’). They were again told that they would estimate the
number of people with the trait after viewing the profiles. After providing estimates, par-
ticipants were told the correct number of people exhibiting the trait. If the genotype was
present in 10% of the people, the trait was also present in 10%; if the genotype was present
in 90% of the people, the trait was also present in 90%. Thus, the genotype and the trait
were either both rare or both common.

After learning about the prevalence of the genotype and trait, participants were told
that they were ready to assess the relation between them. Because the genotype and trait
could be either present or absent, there were four possible complete profiles. Each of the
four was then listed (e.g., ‘‘Genotype: Yes/Trait: Yes’’). The order of the four profiles was
A (yes/yes) through D (no/no) for half of the participants and D through A for the other
half.

Participants were then presented with results said to be from two different random sam-
ples of 8 people from the group of 50. One sample had A through D values of 5, 1, 1, 1,
respectively, and the other had values of 1, 1, 1, 5.3 Participants selected the sample show-
ing the stronger relation between the genotype and the trait.

The next task presented two individual profiles, one with both the genotype and the
trait present (a Cell A observation), and one with both absent (Cell D). Participants select-
ed the profile that provided stronger evidence for a relation between the genotype and
trait.

The final task presented participants with what was said to be a random sample of 8
people from the group of 50. Half of the participants in each condition saw a matrix with
A through D values of 5, 1, 1, 1, and half saw a matrix with A through D values of 1, 1, 1,
5. They were asked to report how strong the relationship was ‘‘for these 8 people’’, which
emphasized the descriptive aspect of the question. They reported strength on a scale of 0 to
20, with 0 = ‘‘no relation,’’ 10 = moderate relation’’, and 20 = ‘‘perfect relation.’’
3 Some readers might notice an oversight on the part of the experimenters: The first sample is impossible for the
presence rare group—there are, e.g., 6 people in the sample with the genotype—and the second is impossible for
the presence common group. The large value should have been 4, not 5. However, only one participant (out of
160) mentioned this in post-experimental comments.
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6.2. Results and discussion

Participants’ estimates of the number of times the genotype and the trait were present
during learning were quite accurate. For the presence rare group, where the genotype and
trait were present in 5 out of 50 profiles, the mean estimates were 5.5 and 5.2, respectively.
For the absence rare group, where the genotype and trait were present in 45 out of 50 pro-
files, the mean estimates were 41.1 and 44.6.

When presented with the two matrices, one with A through D values of 5, 1, 1, 1 and
one with values of 1, 1, 1, 5, and asked which showed a stronger relation between the geno-
type and the trait, 25% of participants in the presence rare group selected the large Cell D
matrix. However, 41% of the absence rare group selected the large Cell D matrix. This dif-
ference is significant: v2 (1, N = 160) = 4.8, p = .029. From a Bayesian viewpoint, Cell D
observations are more informative when the variables’ absence is rare, and participants’
preferences shifted in the direction of the large Cell D matrix under this condition.

When presented with the two individual profiles, one with the genotype and trait both
present (Cell A) and one with them both absent (Cell D), and asked which provided stron-
ger evidence for a relation between the variables, 16% of the presence rare group selected
the joint absence profile. However, 39% of the absence rare group selected the joint
absence profile: v2(1, N = 160) = 10.2, p = .001. Preference for the joint absence profile
increased when absence was rare, as predicted by a Bayesian approach.

Fig. 3 shows the results for the task in which participants rated the strength of the rela-
tion between the genotype and the trait. The solid line corresponds to the presence rare
group and the broken line to the absence rare group. Both groups rated the large Cell
A matrix (i.e., values of 5, 1, 1, 1) as showing a stronger relation than the large Cell D
matrix, but the difference between the ratings is much smaller for the absence rare group.
That is, compared to the presence rare group, the absence rare group gave relatively equal
weighting to Cells A and D. A Rarity (presence rare vs. absence rare) · Matrix (large Cell
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Fig. 3. Experiment 1: Strength-of-relation ratings as a function of whether presence was rare vs. common and
whether Cell A vs. Cell D was large. Standard error bars are shown.
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A vs. large Cell D) ANOVA on the ratings revealed a main effect of Matrix
(F(1,156) = 10.77, p = .001), but the predicted interaction was only marginally significant
(F(= 2.82, p = .095)).

Note that the predictions for all three tasks were based on participants’ beliefs or expec-
tations about rarity beyond the specific matrix or cell information presented to them. That
is, a given cell observation or matrix of observations was evaluated in the context of the
rarity of the variables’ presence more generally. This represents an important departure
from the traditional view of covariation assessment.

Nonetheless, one might contend that the results were somewhat weak. Making absence
rare did increase the perceived informativeness of Cell D, but a majority of participants
still preferred the large Cell A matrix and the Cell A profile, and rated the large Cell A
matrix as stronger. However, recall that we are assuming that participants have a general,
strong tendency to treat presence as rare because that is the norm outside the laboratory.
Thus, it is unlikely that 2-min presentations of unfamiliar variables will completely over-
ride a bias for treating presence as rare. One would expect behavior to move in the predict-
ed direction, though, just as we found (see also Oaksford et al., 1997). Our next experiment
attempted to demonstrate stronger effects.

7. Experiment 2

Is it possible to get participants to reverse their preference for Cell A over Cell D? The
most promising way would be to use variables that participants are familiar with. Ideally,
participants would already know how common the levels of each variable are. Tapping
into participants’ real-world knowledge about rarity can have large effects on behavior
in the direction predicted by the Bayesian account (McKenzie, in press; McKenzie & Mik-
kelsen, 2000). In Experiment 2, one group assessed variables that they were presumably
familiar with in terms of how common each level was. For half of these concrete partici-
pants, the rare level of each variable was labeled ‘‘yes’’ and the common level ‘‘no,’’
whereas the opposite was true for the other half. A second group assessed variables that
they were unfamiliar with. Half of this abstract group also saw one level of each variable
labeled ‘‘yes’’ and the other ‘‘no’’, whereas the labels were switched for the other half. The
prediction was that the abstract group would consider the observation labeled yes/yes
more informative, regardless of which observation it referred to, but that the concrete
group would consider the rare observation more informative, regardless of whether it
was labeled yes/yes or no/no. In other words, the concrete group is predicted to consider
Cell D more informative than Cell A when the former is rare and the latter is common.

7.1. Method

Participants were 306 UCSD students, half of whom were recruited in the same manner
as in Experiment 1, and half of whom were recruited by signs posted on campus. The
former group received partial course credit and the latter received monetary compensation
for participation. Because this experiment did not require a learning session, it took the
form of a paper-and-pencil questionnaire rather than a computer program.

Participants in the concrete condition were told to imagine that they worked at a large
high school and were trying to uncover factors that determine students’ ‘‘high school out-
come’’: Whether they drop out or graduate. Though very few students drop out, they (the
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participants) would like to see all students graduate if possible. By identifying factors that
help predict who will drop out and who will graduate, those likely to drop out could be
identified and preventive measures could be taken. The factor being examined was stu-
dents’ ‘‘emotional status.’’ All students were said to undergo a thorough psychological
examination during their freshman year and categorized as either emotionally disturbed
or emotionally healthy. They were told that very few students are emotionally disturbed
and almost all are emotionally healthy. Though we thought that participants would
assume that each of dropping out and being emotionally disturbed is relatively rare, we
nonetheless reinforced this in the instructions.

The concrete participants were told that they had access to the records of former stu-
dents to find out if there was a relationship between students’ emotional status and high
school outcome. Half of these participants (the presence rare group) were told that each
record listed whether the student was emotionally disturbed (yes or no) and whether the
student dropped out (yes or no). Thus, the presence (i.e., the ‘‘yes’’ level) of each variable
was rare, making a Cell A observation rarer than a Cell D observation. The four possible
categories of students were then listed (e.g., Emotionally disturbed: Yes/Dropped out:
Yes). Order of the categories was A through D for half of the group and D through A
for the other half. The different orders were maintained for all the tasks.

This presence rare group was then presented with the files of two former students
(said to be randomly sampled), one of whom was emotionally disturbed and dropped
out (Cell A) and one of whom was not emotionally disturbed and did not drop out (Cell
D). Participants selected the student that provided stronger support for a relationship
between emotional status and high school outcome. A second task presented what were
said to be two different random samples of 9 former students. One sample had A

through D values of 6, 1, 1, 1 and the other had values of 1, 1, 1, 6. Participants selected
the sample that provided stronger support for a relation between emotional status and
high school outcome. The final task presented participants with either the large Cell A
matrix or the large Cell D matrix and asked them to rate the strength of the relation for

those 9 people. A 21-point scale was used, with 0 = ‘‘no relationship’’ and 20 = ‘‘perfect
relationship.’’

For the other half of the concrete participants, the students’ records listed whether they
were emotionally healthy (yes or no) and whether they had graduated (yes or no). Thus,
the absence of each of these variables was rare, making Cell A more common than Cell D.
These absence rare participants were presented with the same two former students as in the
other group, but labeled differently: One was emotionally healthy and graduated (Cell A)
and one was not emotionally healthy and did not graduate (Cell D). Note that Cell A in
one group was logically equivalent to Cell D in the other; they were simply labeled differ-
ently. The participants selected the student that provided stronger support for a relation-
ship between emotional status and high school outcome. The cells in the choice and ratings
tasks were also simply relabeled relative to the presence rare group.

The abstract group was given an essentially identical task, but the content was changed
so that they would not have experience with how rare or common the levels of the vari-
ables were. They were told that they were trying to uncover the factors that determine
whether people have personality type X or personality type Y. Everyone was said to have
one type or the other. The factor they were currently examining was genotype; everyone
was said to have either genotype A or genotype B. They were trying to find out if there
was a relationship between genotype and personality type.
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Half of the abstract group saw individuals’ records that stated whether each person had
genotype A (yes or no) and whether each had personality type X (yes or no). For the other
half, the records were in terms of whether each person had genotype B (yes or no) and per-
sonality type Y (yes or no). Thus, for example, a person with genotype A and personality
type X was a yes/yes observation for the former group of abstract participants and was a
no/no observation for the latter group. The subsequent tasks were identical to those of the
concrete group: They chose between a Cell A and a Cell D observation, chose between the
large Cell A matrix and the large Cell D matrix, and they rated the strength of the rela-
tionship between genotype and personality type for either the large Cell A matrix or the
large Cell D matrix.

To maintain consistency across the concrete and abstract scenarios, and to provide
benchmarks for comparison, we will refer to the genotype A and personality type X levels
as ‘‘rare’’ and the genotype B and personality type Y levels as ‘‘common,’’ although the
labels are arbitrary. We will put the terms in quotation marks when discussing the abstract
group as a reminder to the reader. The design of the experiment is illustrated in Fig. 4.

7.2. Results

Preliminary analyses showed that neither the order of the cell information (A to D vs. D
to A) nor how participants were compensated (course credit vs. monetary payment) had
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significant effects on the dependent measures. These variables were not included in the
analyses below.

The percentage of participants selecting a Cell D observation as more informative than
a Cell A observation is shown in the top panel of Fig. 5. For the concrete group, few con-
sidered Cell D stronger evidence of a relation when presence was rare, but most preferred
Cell D when absence was rare. That is, the emotionally disturbed/dropped out observation
was considered most informative regardless of whether it was labeled ‘‘Emotionally Dis-
turbed: Yes/Dropped Out: Yes’’ or ‘‘Emotionally Healthy: No/Graduated: No.’’ In con-
trast, few abstract group participants selected Cell D in either condition. They simply
tended to select the observation labeled yes/yes. For example, most participants in the
abstract group selected the ‘‘Genotype A: Yes/Personality Type X: Yes’’ observation as
most informative in one condition, but few selected the logically equivalent ‘‘Genotype
B: No/Personality Type Y: No’’ observation in the other condition.

A Scenario (concrete vs. abstract) · Rarity (presence rare vs. absence rare) log-linear
analysis was performed on the number of participants selecting Cell A vs. D. There were
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Standard error bars are shown.
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main effects of Scenario, with more concrete participants selecting Cell D (p < .001), and
Rarity, with more participants selecting Cell D when absence was rare (p < .001). Both of
these effects are explained by the interaction (p = .009): Concrete participants tended to
select Cell A when presence was rare and Cell D when absence was rare, whereas abstract
participants tended to always select Cell A.

The results for the task in which participants were asked whether the large Cell A
matrix (6, 1, 1, 1) or the large Cell D matrix (1, 1, 1, 6) provided stronger evidence of a
relation between the variables are shown in the bottom panel of Fig. 5. The concrete group
rarely selected the large Cell D matrix when presence was rare, but often selected it when
absence was rare. In contrast, the abstract group rarely selected the large Cell D matrix in
either condition. A Scenario (concrete vs. abstract) · Rarity (presence rare vs. absence
rare) log-linear analysis showed main effects of Scenario, with more concrete participants
selecting the large Cell D matrix (p < .001), and Rarity, with more participants selecting
the large Cell D matrix when absence was rare (p < .001). Most important was the inter-
action (p = .002): Concrete participants tended to select the large Cell A matrix when pres-
ence was rare and select the large Cell D matrix when absence was rare, whereas abstract
participants tended to always select the large Cell A matrix.

The results of the ratings task are shown in Fig. 6. The left panel shows the results for
the concrete group. The left pair of columns in the panel shows the ratings when the large
cell corresponded to the rare observation (an emotionally disturbed drop out). The first
column corresponds to labeling the rare level as ‘‘yes’’ and the second to labeling it as
‘‘no.’’ In other words, these two matrices were logically identical but labeled differently.
The virtual equivalence between the columns shows that labeling had essentially no effect
on the ratings. The same is largely true for the matrices in which the large cell correspond-
ed to the common observation (an emotionally healthy graduate), shown by the next pair
0

2

4

6

8

10

12

14

16

18

20
Presence Rare
Absence Rare

Rare Observation
(Emotionally Disturbed/

Drop out)

Common Observation
(Emotionally Healthy/

Graduate)

Large Cell

0

2

4

6

8

10

12

14

16

18

20
Presence "Rare"
Absence "Rare"

"Rare" Observation
(Genotype A/

Personality Type X)

"Common" Observation
(Genotype B/

Personality Type Y)

Large Cell

Concrete
Scenario

Abstract
Scenario

Fig. 6. Experiment 2: The left panel shows strength-of-relation ratings for the concrete scenario as a function of
whether presence was rare vs. common and whether the matrix’s large cell was a rare vs. common observation.
The right panel shows analogous results for the abstract scenario. Standard error bars are shown.



52 C.R.M. McKenzie, L.A. Mikkelsen / Cognitive Psychology 54 (2007) 33–61
of columns. Ratings were similar regardless of whether the common observation was
labeled as no/no or yes/yes (first and second columns, respectively).

The right panel in Fig. 6 shows the ratings for the abstract group. The first pair of col-
umns in this panel corresponds to the two matrices in which the ‘‘rare’’ observation (geno-
type A/personality type X) was the large cell. Whether this observation was labeled yes/yes
(the first column) or no/no (second column) had a large effect on ratings, with higher rat-
ings when the large cell was yes/yes. The final pair of columns shows ratings for the two
matrices in which the ‘‘common’’ observation (genotype B/personality type Y) was the
large cell. The first of these columns corresponds to the no/no labeling and the second
to the yes/yes labeling. Again, labeling the same observation differently affected ratings,
with the yes/yes labeling leading to higher ratings.

A Scenario (concrete vs. abstract) · Rarity (presence rare vs. absence rare) · Matrix
(large Cell A vs. large Cell D) ANOVA on the ratings revealed three interactions. The first,
Scenario · Matrix, was due to concrete participants rating the large rare observation
matrix higher (the first pair of columns) than the large common observation matrix (sec-
ond pair; 11.9 vs. 10.4, respectively), whereas the opposite was true for the abstract par-
ticipants (9.8 vs. 10.8; F(1,298) = 6.06, p = .014). The interaction per se is not
meaningful given the arbitrariness of ‘‘rare’’ and ‘‘common’’ in the abstract group. How-
ever, the difference in ratings for the concrete group is meaningful (and reliable:
t(152) = 2.10, p = .037): From the current normative perspective, the matrices in which
the rare observation is the large cell provide stronger support for a relation than do the
matrices in which the common observation is the large cell. This finding provides further
evidence that the concrete participants responded in a qualitatively Bayesian manner (even
in this ostensibly descriptive strength-rating task). The second interaction was between
Rarity and Matrix, essentially indicating that, collapsing across scenarios, large Cell A
matrices were given higher ratings than large Cell D matrices (F = 20.10, p < .001). Most
important was the predicted 3-way interaction (F = 8.14, p = .005): Concrete participants
were largely unaffected by whether a given observation was labeled yes/yes vs. no/no, but
the abstract group was affected. In terms of the figure, the two columns making up each
pair are about the same height for the concrete group, but they are different for the
abstract group. Concrete participants did not attend to labeling, but instead attended to
whether the large cell observation was rare or common. In contrast, the abstract group’s
ratings were driven by whether the large cell was labeled yes/yes or no/no. Contrasts
revealed no differences between the heights of the two columns making up each pair for
the concrete group (both ps > .2), but the columns making up each of the two abstract
pairs differed from each other (both ts > 3.6, ps < .001).

7.3. Discussion

The results for the abstract condition replicated previous findings in the literature that
Cell A is seen as much more informative than Cell D. Similarly, the same pattern of results
was found for the concrete group when they knew that presence was rare. However, when
the labels of the levels of the concrete variables were reversed such that absence was rare,
participants considered Cell D most informative. This was true both when individual cells
and when different matrices were compared in terms of informativeness. To our knowl-
edge, this is the first demonstration of a reversal of Cell A ‘‘bias.’’ The results provide
strong evidence for the hypothesis that the robust Cell A ‘‘bias’’ demonstrated over the
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past four decades stems from (a) participants’ inferential approach to the task, and (b)
their default assumption (perhaps implicit) that presence is rare. When there is good rea-
son to believe that absence is rare, Cell D is deemed more informative, just as the Bayesian
approach predicts.

The results regarding the strength-of-relation ratings showed that even explicitly
descriptive questions about the matrix at hand are influenced by normatively relevant infer-

ential information that goes beyond the information contained in the matrix. This is impor-
tant because traditional covariation research, which has assumed a descriptive (statistical)
normative model, has found Cell A bias when asking participants descriptive questions.
Our results indicate that participants take an inferential approach to covariation tasks,
and that this influences responses to even purely descriptive questions.

It is possible that participants in the concrete condition mentally recoded joint absence
in terms of joint presence when absence was rare. That is, these participants might have
recoded ‘‘not emotionally healthy and did not graduate’’ as ‘‘emotionally disturbed and
dropped out’’, effectively transforming Cell D into Cell A. This would not be evidence
against our position that sensitivity to rarity is driving perceived cell informativeness (since
such recoding would presumably take place only for rare, jointly absent events), but it
does suggest an interesting process by which the demonstrated Cell D ‘‘bias’’ might have
occurred.

Finally, note that we are explaining both the concrete and the abstract group in terms
of their sensitivity to rarity: The former exploited real-world knowledge about which
observations were rare, and the latter exploited knowledge about how labeling indicates
what is (usually) rare.

8. Prior beliefs and covariation assessment

Our focus thus far has been on the role of rarity in covariation assessment, which led to
the emphasis on individual cells and the likelihood portion of Bayes’ theorem. However,
the hallmark of a Bayesian approach is to incorporate prior beliefs that the hypotheses are
true (e.g., that X and Y are related vs. unrelated). For example, to the extent that one does
not believe that there is a relationship between the variables in question, the stronger the
subsequent evidence required before believing that there is a relationship.

The following is Bayes’ theorem in odds form:

P ðEjH1Þ=pðEjH2Þ � pðH1Þ=pðH2Þ ¼ pðH1jEÞ=pðH2jEÞ;
where E corresponds to evidence, or data. In this context, the data are Cell A, B, C, and/or
D frequencies. The first ratio, p(E|H1)/p(E|H2), is the likelihood ratio discussed earlier.
The second ratio, p(H1)/p(H2), is the prior odds, consisting of the prior probabilities
(i.e., before receiving E) that each hypothesis is true. Multiplying them together results
in the posterior odds, p(H1|E)/p(H2|E), shown on the right. This ratio represents the nor-
mative odds that H1 rather than H2 is true, given E. It is perhaps worth pointing out that,
though we discussed the likelihood ratio in the context of a single observation, E can also
correspond to multiple observations (e.g., an entire matrix). The equation makes explicit
that both the likelihood ratio discussed earlier and the prior probabilities discussed above
are important from a Bayesian perspective.

In fact, much evidence indicates that prior beliefs influence judgments of covariation
(Alloy & Tabachnik, 1984; Chapman & Chapman, 1967, 1969; Crocker, 1981; Jennings
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et al., 1982; Nisbett & Ross, 1980; Peterson, 1980). Alloy and Tabachnik (1984) reached
this conclusion after reviewing a large number of experiments on both humans and non-
human animals. For example, Peterson (1980) argued that participants tend to report a
positive relationship between noncontingent variables in laboratory experiments because
they have strong prior beliefs that there will be a relationship present in the experimental
materials. He showed that mentioning in the instructions the possibility that there might
be no relationship between the variables, which presumably increased participants’ prior
probability that no relationship would occur, greatly increased the chances that partici-
pants reported that there was no contingency.

Chapman and Chapman (1967) showed especially strong effects of prior beliefs in
covariation assessment. They presented participants with 45 Draw-a-Person pictures,
each randomly paired with statements about the symptoms exhibited by the patient
who supposedly drew the picture. The participants were subsequently asked which pic-
ture characteristics and patient characteristics were associated. Interestingly, these naı̈ve
participants claimed to see the same relationships that clinicians claimed to see (e.g.,
participants falsely claimed that ‘‘suspicious’’ patients drew people with atypical eyes).
The authors showed further that participants tended to see positive relationships
between certain patient and picture characteristics even when the objective relationships
were negative, and Chapman and Chapman (1969) showed that strong preconceptions
hindered participants’ ability to detect other (unexpected) relationships that really were
there.

Alloy and Tabachnik (1984) discussed these and many other examples indicating that
participants’ judgments of covariation are influenced by their prior beliefs about the nat-
ure of the relationship presented to them. Seen only in the context of a given experiment,
where the information is usually contrived, incorporating prior beliefs might seem odd.
Seen in its broader context, though, where current information is part of a constant flow,
past experience is relevant, and incorporating prior beliefs is necessary for being accurate.
It might be the case that the prior beliefs are inaccurate (as implied by Chapman & Chap-
man, 1967, 1969), but the normative issue for our purposes is how one should behave given
prior beliefs and new information. The Bayesian perspective claims that both are relevant;
to ignore prior beliefs is an error.

Interestingly, Alloy and Tabachnik (1984) were in the position of having to argue
that it makes good sense to incorporate prior beliefs when assessing covariation. Due
to the entrenchment of u as the normative model, previous authors had claimed that
the influence of prior beliefs was nonnormative (Crocker, 1981; Nisbett & Ross,
1980). As mentioned earlier, however, Alloy and Tabachnik did not take an explicitly
Bayesian stance and were left distinguishing between being ‘‘accurate’’—behaving in
accord with u or Dp—and being ‘‘rational’’—incorporating prior beliefs. Working with-
in the traditional framework, incorporating prior beliefs is an awkward layer to be add-
ed to the normative model. In contrast, the Bayesian view accommodates prior beliefs
naturally; they are expected to influence behavior. Thus, this is another instance where
knowledge beyond the specific matrix information influences responses that are osten-
sibly descriptive, and in a manner predicted by the Bayesian account. Participants
appear to approach covariation tasks in an inferential, not a descriptive, manner. A
qualitative Bayesian approach can parsimoniously account for a variety of covariation
findings. Robust ‘‘biases’’ are no longer anomalies to be explained, but are instead the
result of normative principles.
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9. Human rationality

Because our analysis and results indicate that what have been traditionally viewed as
covariation ‘‘errors’’ can be seen as the result of normative principles, the article contrib-
utes to the current debate regarding human rationality (e.g. Anderson, 1991; Cohen, 1981;
Gigerenzer, 1991, 1996; Kahneman & Tversky, 1996; Oaksford & Chater, 1994, 1996;
Stanovich, 1999; Stanovich & West, 2000). The topic has generated heated exchanges,
and we want to be clear about what we believe our analysis and data do—and do
not—imply.

Our general claim is that people’s behavior in covariation tasks is most usefully seen as
stemming from an inferential, Bayesian approach. The two most robust findings in the
covariation literature—a preference for joint presence over joint absence and the influence
of prior beliefs—along with our two experiments, support this idea. These results, together
with those reported by Griffiths and Tenenbaum (2005), provide considerable support for
a Bayesian perspective.

Furthermore, Bayesianism is considered by many (though not all) statisticians and
philosophers to be the optimal approach to updating beliefs in light of new information
(e.g. Earman, 1992; Horwich, 1982; Howson & Urbach, 1989). The combination of
Bayesianism’s formidable normative status and its ability to explain covariation behav-
ior is both interesting and important. However, some might argue that, even if a nor-
mative Bayesian approach does explain covariation behavior, participants are
nonetheless making errors by incorporating prior beliefs and exhibiting a bias for joint
presence. That is, if participants are asked to report the degree of association between
the variables, exhibited only by the data in the matrix, then they should behave accord-
ingly. To behave differently is to behave irrationally. We feel that this line of reasoning
is presumptuous and, ultimately, counterproductive to the goal of understanding human
behavior. Our analysis indicates that what have traditionally been viewed as errors need
not be viewed as such. One could continue calling the preference for joint presence in a
typical, abstract laboratory task an error, but we see little point in doing so. Should one
approach a covariation task in the traditional manner assumed by psychologists? Our
cognitive system apparently approaches covariation a different way—a way that puts
the task into a larger inferential framework, is influenced by how the world usually
works, and is normatively justifiable.

Although we think it is difficult to make normative claims about which normative the-
ory should be applied to a given real-world task, there might nonetheless be situations in
which people give more weight to joint presence than joint absence, or are influenced by
prior beliefs, when it is generally agreed that to do so is a mistake. This is not so paradox-
ical. In the courtroom, for example, it is considered inappropriate for prior beliefs about a
defendant’s guilt to influence jurors, even though this goes against Bayesian principles
(Tribe, 1971; see also Koehler, 1992; Koehler & Shaviro, 1990). However, our analysis
indicates that it should not be assumed that people need ‘‘help’’ when assessing whether
and how variables are related. ‘‘Debiasing’’ (i.e., encouraging people to calculate u or
Dp) might have no effect or even lead to worse performance if the circumstances are such
that the Bayesian approach is reasonable.

We have already mentioned that we are not claiming that people are Bayes-optimal
processors of information, neither in general nor in covariation tasks in particular. None-
theless, the process people do use to assess covariation is ‘‘Bayes-like’’ in that people are
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sensitive to prior beliefs and to the rarity of data. Indeed, we suspect that following these
two important principles alone will go a long way toward mimicking a Bayesian response
(e.g. McKenzie, 1994). Though we do not specify a process model of covariation assess-
ment, our account is useful because it provides a unified account of an important behavior.
It answers some otherwise unanswered questions.

Finally, it is important to reiterate that people’s covariation behavior in the laboratory
seems strongly influenced by the conditions under which they usually operate. Following
Anderson (1990), we have argued that a variable’s presence is usually rare, and that is why
participants generally consider Cell A more informative than Cell D. It is of interest that
such effects have occurred despite experimenters’ attempts to decontextualize tasks to
eliminate real-world influences. Experimenters generally attempt to use tasks that will
not invoke participants’ idiosyncratic differences. Our research indicates that using impov-
erished stimuli merely leads participants to fall back on default assumptions about impor-
tant task parameters and, furthermore, these default assumptions appear to coincide with
what one would reasonably expect in the real world. Taking into account real-world con-
ditions, combined with normative principles that make sense under these conditions, can
help explain why people behave as they do.

Appendix A.

In this appendix, we show that the joint presence of two binary variables (X and Y) is
more informative than their joint absence with respect to determining whether the vari-
ables are related if P(X) < 1 � P(Y). The measure of informativeness we use is the absolute
log likelihood ratio: |LLRj| = Abs (log2[p(j|H1)/p(j|H2)]), where j corresponds to Cell A, B,
C, or D. Let H1 and H2 be mutually exclusive and exhaustive hypotheses about the degree
of relatedness between X and Y, which have levels of presence and absence. P(X) and P(Y)
are the probability of the respective variable being present (rather than absent) in the pop-
ulation of interest and do not differ between H1 and H2. Let P(A) be the probability of a
Cell A observation (joint presence of X and Y), P(B) be the probability of a Cell B obser-
vation (the presence of X and the absence of Y), and P(D) be the probability of a Cell D
observation (joint absence of X and Y). We start with the equivalence of |LLRA| and
|LLRD|

jLLRAj ¼ jLLRDj;

1 ¼ jLLRAj=jLLRDj;

1 ¼ jLLRA=LLRDj:
We can drop the absolute value bars because LLRA and LLRD will either both be positive
or both be negative—given our assumptions that H1 and H2 are mutually exclusive and
exhaustive and that P(X) and P(Y) do not change under H1 and H2—so their resulting
ratio will always be positive.

1 ¼ LLRA=LLRD:

Let the likelihood ratio for Cell j (LRj) be p(j|H1)/p(j|H2)
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1 ¼ log2ðLRAÞ=log2ðLRDÞ;

0 ¼ log ðLR =LR Þ;
2 A D

1 ¼ LR =LR :
A D

By definition

1 ¼ ½P ðAjH1Þ=P ðAjH2Þ�=½P ðDjH1Þ=PðDjH2Þ�:

Simple algebra leads to

1 ¼ P ðAjH1ÞP ðDjH2Þ=½P ðDjH1ÞPðAjH2Þ�:

Using the identities p(A|H) = P(X) � P(B|H) and P(D|H) = 1 � P(Y) � P(B|H) and again
assuming that P(X) and P(Y) do not change under H1 and H2, we can express the condi-
tional cell probabilities in the following way:

1 ¼ ð½P ðX Þ � P ðBjH1Þ�½1� PðY Þ � P ðBjH2Þ�Þ=ð½1� PðY Þ � P ðBjH1Þ�½PðX Þ � P ðBjH2Þ�Þ:

Multiplying leads to

1 ¼ ½P ðX Þ � P ðX ÞP ðY Þ � P ðX ÞP ðBjH2Þ � P ðBjH1Þ þ P ðY ÞPðBjH1Þ
þ P ðBjH1ÞP ðBjH2Þ�=½P ðX Þ � P ðX ÞP ðY Þ � PðX ÞP ðBjH1Þ � P ðBjH2Þ
þ P ðY ÞP ðBjH2Þ þ PðBjH1ÞP ðBjH2Þ�:

Setting the numerator equal to the denominator and subtracting like terms results in

1 ¼ ½�P ðX ÞPðBjH2Þ � P ðBjH1Þ þ P ðY ÞP ðBjH1Þ�=½�P ðX ÞP ðBjH1Þ � P ðBjH2Þ
þ P ðY ÞP ðBjH2Þ�:

The rest is simple algebra

0 ¼ �P ðBjH1Þ½1� P ðY Þ� � P ðX ÞP ðBjH2Þ þ P ðBjH2Þ½1� P ðY Þ� þ P ðX ÞP ðBjH1Þ;

0 ¼ ½1� PðY Þ�½PðBjH2Þ � PðBjH1Þ� þ PðX Þ½P ðBjH1Þ � PðBjH2Þ�;

0 ¼ ½1� PðY Þ�=P ðX Þ þ f½PðBjH1Þ � P ðBjH2Þ=½P ðBjH2Þ � P ðBjH1Þ�g;

1 ¼ ½1� PðY Þ�=P ðX Þ;

P ðX Þ ¼ 1� P ðY Þ:

Thus, we have shown that a Cell A observation and a Cell D observation have the same
|LLR| if P(X) = 1 � P(Y). Furthermore, it follows that |LLRA| > |LLRD| if
P(X) < 1 � P(Y) and that |LLRA| < |LLRD| if P(X) > 1 � P(Y). We can show this by
beginning each proof with the desired inequality rather than the equality as above.
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