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Many purported demonstrations of irrational behavior rely on the assumption that participants believe
key task parameters that are merely asserted by experimenters. For example, previous researchers have
found that participants who first reported confidence in items presented in a yes–no format did not change
confidence to the degree prescribed by the normative model when those same items were later presented
in a forced-choice format. A crucial assumption, however, was that participants fully believed the
assertion that the forced-choice items were mutually exclusive and exhaustive. In this article, the authors
derive and test a new normative model in which it is not assumed that participants fully believe the
assertion. Two visual identification experiments show that the new normative model provides a com-
pelling account of participants’ confidence reports.

In essence, all information is imperfectly reliable, and informa-
tion provided to participants by experimenters is no exception.
Indeed, experimenter-provided information might be less trustwor-
thy than most. Participants are often deceived in psychology ex-
periments, and they are aware of this. Not only do students
routinely learn about classic studies in which deception has been
used (e.g., Asch, 1955; Milgram, 1963), but the American Psy-
chological Association (APA) requires that participants be fully
debriefed whenever they are deceived (APA, 1992). First- or
secondhand knowledge about deception in psychology experi-
ments is widespread.

Concerned about the use of deception in psychology experi-
ments, Hertwig and Ortmann (2001; see also Ortmann & Hertwig,
1997) noted a variety of ways in which suspicious participants
behave differently than trusting ones. Not mentioned by these
authors, however, is what we consider to be an especially troubling
aspect of the implications of participant skepticism. In many tasks,
participants’ behavior is compared to a normative standard, and
differences between behavior and the normative response are rou-
tinely interpreted as errors. Often, however, a critical assumption
in attributing errors to participants is that they believe the assump-

tions underlying the purported normative response (e.g., that the
options are mutually exclusive and exhaustive, or that the obser-
vations are randomly sampled). If participants do not fully believe
key task parameters, which are often merely asserted by experi-
menters, then calling their responses “errors” would be misleading.

Indeed, findings by other authors suggest that increasing the
believability of important task parameters can change participants’
behavior in the direction of the normative response. Although we
investigate a different task, some previous findings regarding
participants’ use of base rates provide an instructive example. On
the basis of results from their well-known lawyer–engineer prob-
lem, Kahneman and Tversky (1973) argued that participants were
committing a normative error by severely underweighting base
rates when reporting subjective probabilities. However, Gigeren-
zer, Hell, and Blank (1988) disputed that conclusion, because a key
assumption underlying the normative model—that the obser-
vations on which the subjective probabilities were based were
randomly sampled—was merely asserted by the experimenters.
Gigerenzer et al. made random sampling seem more realistic to
participants by having them draw the observations themselves
from urns. This resulted in subjective probabilities that were much
more similar to the normative responses.

The fact that increasing the realism (and hence believability) of
a key task parameter can lead to more normative responses sug-
gests that participant skepticism should be taken seriously as a
reason why purported errors occur. However, without knowing
participants’ degree of belief in the parameter of interest and how
they ought to respond given that degree of belief, important ques-
tions will inevitably remain unanswered. For example, even the
responses of Gigerenzer et al.’s (1988) participants who sampled
the observations themselves deviated from the purportedly rational
model. Was this because they were making errors (albeit relatively
small ones), or were they responding optimally given residual
doubts about the legitimacy of the random sampling procedure
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(which was, in fact, illusory)? Perhaps it is not reasonable to
assume that participants fully believe key task parameters, even
when experimenters go to great lengths to increase believability.
(Participants still know, after all, that they are participating in a
psychology experiment.) Furthermore, if Kahneman and Tversky’s
(1973) participants had little or no faith in the random sampling
claim, might even they have been responding optimally?

In this article, we provide a specific example of a general
approach to dealing with participant skepticism that can address
the sorts of questions raised above. In general, we propose that
researchers derive and test normative models that do not assume
full belief in important task parameters. Although the approach is
quite general in theory, it must be implemented on a task-by-task
basis in practice. The topic we examine is confidence in forced-
choice tasks, which has purportedly been shown to be suboptimal.
More specifically, it has been shown that, when presented with a
pair of forced-choice items and asked for confidence that a par-
ticular (focal) item is the true one, participants are insufficiently
influenced by their confidence that the nonfocal item is the true
one (as determined by their earlier responses in a yes–no format in
which the same items were presented individually; McKenzie,
Wixted, Noelle, & Gyurjyan, 2001). However, a crucial assump-
tion underlying the claim of suboptimality is that participants
believe that the forced-choice options are mutually exclusive and
exhaustive (i.e., one item is true and the other false). Below, we
discuss how, in the current studies, we derived and tested a
normative model that does not assume full belief in this parameter,
allowing us to check whether participants are responding ratio-
nally, given their less-than-full belief that the forced-choice op-
tions are mutually exclusive and exhaustive.

The current approach treats participant skepticism as an inevi-
table and tractable variable in psychology experiments and has the
potential for leading to a better understanding of behavior, espe-
cially when claims about errors are made in tasks in which a
crucial assumption is that participants believe certain task param-
eters. To our knowledge, we are the first to adopt such an
approach.

The rest of the article is organized as follows. In the next
section, we describe recent research examining change in confi-
dence between yes–no and forced-choice tasks and how partici-
pants’ responses deviate from the purported normative model. In
the subsequent section, we introduce a new normative model in
which it is not assumed that participants believe that the forced-
choice alternatives are mutually exclusive and exhaustive. We then
report results from two experiments that test the traditional nor-
mative model, our new normative model, and a descriptive model
using a visual identification task. In the General Discussion sec-
tion, we discuss potential implications for other areas of research
in which researchers assume that participants believe key task
parameters.

Relation Between Confidence in Yes–No Tasks and
Confidence in Forced-Choice Tasks

Yes–no and forced-choice tasks are widely used in psychology.
In perception experiments, for example, participants are some-
times asked to decide whether a particular stimulus appeared (a
yes–no task) or to decide which one of two or more stimuli

appeared (a forced-choice task). Similarly, in categorization ex-
periments, participants might be asked to decide whether an item
belongs to a particular category (yes or no) or to decide which of
two categories the item belongs to (forced choice). In recognition
memory experiments, the task is to decide whether an individual
item appeared on an earlier study list or to decide which member
of a pair of items appeared on the list. Finally, in judgment and
decision making tasks, participants might report whether an indi-
vidual statement is true or select the one true answer from among
multiple alternatives. In both yes–no and forced-choice tasks,
participants sometimes report their confidence that they made the
correct response.

Despite the ubiquity of the two tasks, the issue of how confi-
dence between them is related has only recently been examined
empirically (McKenzie et al., 2001). Consider being presented
sequentially with two general-knowledge statements and reporting
confidence that each is true: (A) The population of the United
States is greater than 265 million. (B) Sophocles was born before
Socrates. Assume that you are 80% confident that A is true and
40% confident that B is true. You are then presented with A and
B simultaneously and told that exactly one of the statements is
true—that is, the task has changed from yes–no for each of A and
B to forced choice involving both A and B. Now how confident
would you be that A is true? That B is true? How confident should
you be?

A Normative Model and a Descriptive Model

To illustrate the normative forced-choice response, continue
assuming that yes–no confidence in A and B is 80% and 40%,
respectively. These probabilities (and their complements) are rep-
resented by the marginals in Figure 1. When A and B are subse-
quently paired, one of four possibilities can occur: Both A and B
are true (A&B), A is true and B false (A&�B), A is false and B
true (�A&B), and both A and B are false (�A&�B). We assume
throughout this article that confidence in A and confidence in B are
statistically independent at the yes–no stage, allowing us to simply
multiply the marginals to calculate the probability of each of the
four possible joint outcomes, shown in the respective cells.

The typical forced-choice task involving A and B is one in
which the A&B and the �A&�B outcomes are impossible. Either
A is true and B is false, or A is false and B is true. In frequentist
terms, because 56 of 100 outcomes will fall under the A&�B and
�A&B categories, and 48 belong to the former, the probability
that A is true, assuming that A and B are mutually exclusive and
exhaustive, is 48/56, or about .86. Similarly, the probability that B
is true is 8/56, or .14. In the example, then, forced-choice confi-
dence in A should increase from 80% to 86%, and confidence in
B should decrease from 40% to 14%. The following is the nor-
mative model, given the above assumptions (McKenzie et al.,
2001; see also Ferrel & McGoey, 1980; Luce, 1963):

c�A,B� � c�A��1 � c�B��/�c�A��1 � c�B�� � c�B��1 � c�A���

(1)

where c(A,B) corresponds to confidence that A is true given that A
and B are mutually exclusive and exhaustive (i.e., at the forced-
choice stage), and where c(A) and c(B) are confidence in A and B
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when they are independent (i.e., at the yes–no stage). (McKenzie
et al. also present the normative model without the assumption that
confidence levels in the yes–no items are independent.) To calcu-
late c(B,A), simply switch c(A) and c(B) in Equation 1.

The above normative model describes how participants should
change confidence between yes–no and forced-choice tasks. Mc-
Kenzie et al. (2001) also tested three descriptive models and,
overall, the best-performing one was a more general form of the
normative model, which they referred to as the multiplicative
model. The model is much like the normative model, except that
one free parameter is added to the equation:

c�A,B� � c�A��1 � c�B��w/�c�A��1 � c�B��w � c�B�w�1 � c�A���.

(2)

The parameter, w, is associated with each term involving c(B)
and determines the extent to which, holding c(A) and c(B) con-
stant, c(B) affects c(A,B). The expected range of w is 0–1. When
w � 1, Equations 1 and 2 are identical and, as w decreases, c(B)
has a smaller effect on c(A,B). When w � 0, c(B) has no effect on
c(A,B), which will then equal c(A). Note that participants’ re-
sponses are normative only when w � 1 in this model. Consider-
able evidence indicates that nonfocal alternatives are often under-
weighted, so there is good reason to believe that w might be less
than 1 (e.g., Evans, 1989; Fischhoff & Beyth-Marom, 1983; Klay-
man & Ha, 1987; McKenzie, 1994, 1998, 1999). If w 	 1, then
confidence in A and B in the forced-choice case will not sum to
100%, except when c(A) and c(B), confidence at the yes–no stage,
happen to sum to 100%. The normative model, in contrast, always
requires that forced-choice confidence sum to 100%.

Previous Empirical Findings

McKenzie et al. (2001) reported two experiments, but we just
describe one, because both led to similar findings. Their Experi-
ment 2 presented participants with general-knowledge statements.
Confidence was reported in the truth of each individual statement
and then was reported again when the statements had been put into
pairs such that one statement was true and one was false. Half of
the participants were instructed to have their forced-choice confi-
dence reports sum to 100, and half were not. A general finding was
that the normative model (Equation 1) did not accurately predict
participants’ responses (see also Bender, 1998), but that the mul-
tiplicative model fit well. Furthermore, the value of the multipli-
cative model’s w parameter that provided the best fit was always
less than 1, indicating that confidence in nonfocal alternatives was
underweighted. McKenzie et al. noted that one reason for the
suboptimal impact is that participants might not have fully be-
lieved the assertion that the forced-choice items were mutually
exclusive and exhaustive, but they did not pursue the issue. In the
next section, we describe a new normative model that can help
determine the viability of this account.

Trust Model

The normative model (Equation 1) assumes that the participant
fully believes, at the forced-choice stage, that A and B are mutu-
ally exclusive and exhaustive. However, participants could believe
to some extent that A and B might both be true and/or that they
might both be false. As mentioned, participants often distrust what
experimenters tell them, usually with good reason (e.g., Hertwig &
Ortmann, 2001; Ortmann & Hertwig, 1997). In fact, participants
are sometimes deceived about forced-choice items being mutually
exclusive and exhaustive. In the memory literature, for example,
Glanzer and Bowles (1976) told participants that they would be
presented with a target and a lure, but null test trials, which
involved a choice either between two targets or between two lures,
were also included without warning. This procedure has since been
used quite frequently (e.g., Wixted, 1992).

What is the optimal level of confidence to report in an item at
the forced-choice stage if the reliability of the experimenter’s
assertion that the two alternatives are mutually exclusive and
exhaustive is considered to be less than 100%? The answer de-
pends on the degree to which the experimenter’s assertion is
believed. How can this be determined? A reasonable starting point
is to ask what the probability is that A and B are mutually
exclusive and exhaustive prior to a consideration of what the
experimenter has to say about it. Whatever that prior probability
turns out to be, it would then be updated, depending on how
reliable the participant considers the experimenter to be.

The prior probability that the forced-choice alternatives are
mutually exclusive and exhaustive depends on c(A) and c(B), the
level of confidence in the two alternatives when they are consid-
ered independently (i.e., at the yes–no stage). If, for example, the
participant is highly confident that A is true and highly confident
that B is true (or that both are false) when they are considered
independently, then it should seem unlikely that one is true and the
other false when A and B are presented as a pair. In contrast, if a
participant has high confidence in A and low confidence in B (or

Figure 1. An illustration of the normative model in 2 
 2 form using a
general-knowledge task (as described in the text). The marginal probabil-
ities correspond to confidence in statements A and B (and their comple-
ments) in a yes–no task. When the statements are paired, one of four
outcomes can occur: (a) Both A and B can be true (upper left cell), (b) A
can be true and B false (upper right), (c) B can be true and A false (lower
left), or (d) both A and B can be false (lower right). The resulting (joint)
probabilities in each cell assume that A and B are statistically independent.
In a forced-choice task involving A and B, the A&B and the �A&�B
outcomes are not possible: Either A or B is true, but not both. For the
forced-choice task, then, confidence in A should increase from 80% to
0.48/(0.48 � 0.08) � 86%. Similarly, confidence in B should decrease
from 40% to 0.08/(0.08 � 0.48) � 14%.
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vice versa), then it should seem likely that one is true and the other
false when they are presented as a pair. More precisely, the prior
probability, q, that two alternatives are mutually exclusive and
exhaustive is given by the following:

q � c�A��1 � c�B�� � c�B��1 � c�A��. (3)

If, as in our previous example, c(A) � 80% and c(B) � 40%,
then the probability that A is true and B false (A&�B) is 0.8 

0.6 � 0.48, and the probability that B is true and A false (�A&B)
is 0.2 
 0.4 � 0.08. In this case, q equals 0.48 � 0.08 � 0.56.
Thus, prior to taking into account the information supplied by the
experimenter, a normative participant would assume that the prob-
ability is .56 that one of the two alternatives is true and the other
false.

The prior probability is then updated on the basis of the infor-
mation supplied by the experimenter (who claims that the alterna-
tives are mutually exclusive and exhaustive) in accordance with
Bayes’s theorem. We assume that the degree to which the prior
probability changes in response to that information is a function of
the experimenter’s perceived reliability. The more reliable the
experimenter is perceived to be, the more the prior probability is
adjusted upward.

The following is Bayes’s theorem using present notation:

s � qr/�qr � �1 � q��1 � r��, (4)

where q represents the prior probability that the alternatives are
mutually exclusive and exhaustive, or p(MEE), s represents the
posterior probability (i.e., the probability that the two alternatives
are mutually exclusive and exhaustive after taking into account
that the experimenter has said they are), or p(MEE|“MEE”), and r
represents experimenter reliability, or p(“MEE”|MEE). More spe-
cifically, r represents the probability that the experimenter would
claim that the two alternatives are mutually exclusive and exhaus-
tive given that they really are, and 1 � r is the probability that the
experimenter would claim that the two alternatives are mutually
exclusive and exhaustive given that they are not.1

For a participant convinced that the information provided by the
experimenter is 100% reliable (r � 1), Equation 4 shows that the
posterior probability, s, is equal to 1 and that normative perfor-
mance is prescribed by Equation 1. However, for a participant who
believes that the information provided by the experimenter is less
than 100% reliable, normative performance is given by the fol-
lowing, closely related, equation (derived in Appendix A):

c�A,B� � w�c�A��1 � c�B��/�c�A��1 � c�B�� � c�B��1 � c�A����

� �1 � w�c�A�, (5)

where w � (s � q)/(1 � q). In words, Equation 5 states that
confidence in A in the forced-choice situation is a weighted
average of the normative model (Equation 1) and confidence in A
at the yes–no stage. For a participant who believes that the exper-
imenter is 100% reliable, s � 1 and, therefore, w � 1. In that case,
Equation 5 reduces to Equation 1. For a participant who believes
that the experimenter is only 50% reliable (i.e., r � .5 such that the
experimenter’s claim adds no new information), s � q, according
to Equation 4, and, therefore, w � 0. In that case, Equation 5
reduces to c(A), which is to say that the participant’s confidence in
A in the forced-choice situation remains what it was in the yes–no

situation (as it should, if the experimenter’s assertion is considered
to be completely uninformative). Finally, for a participant who
believes that the experimenter is of intermediate reliability (i.e.,
.5 	 r 	 1), confidence in A will fall somewhere between c(A) and
what Equation 1 says it should be. That is, the change in confi-
dence in A should be somewhat less than is prescribed by Equation
1. Equation 5 is what we call the trust model because its prediction
depends on the degree to which the participant believes that the
forced-choice items are mutually exclusive and exhaustive. When
fitting the model to participants’ data, we assume that r is deter-
mined prior to participants’ seeing any forced-choice items and
does not vary with the particular pair of items under consideration.

The trust model is interesting for two reasons. First, it is nor-
mative under the assumption that the judge does not fully believe
that A and B are mutually exclusive and exhaustive (although, for
the sake of simplicity, we refer to Equation 1 as the normative
model unless noted otherwise). Second, the model shows that it
can be normatively appropriate for c(B) to have less impact on
c(A,B) than is prescribed by Equation 1.

As written, the trust model is conceptually appealing, but it is
written in terms of q and s (the prior and posterior probabilities that
A and B are mutually exclusive and exhaustive). To estimate the
degree to which a participant considers the information provided
by the experimenter to be reliable, an equation that contains r as a
free parameter is needed. This is accomplished by substituting the
right side of Equation 4 for s in Equation 5 and the right side of
Equation 3 for q in Equation 5. The result (see Appendix B) is

c�A,B� �
rc�A��1 � c�B�� � �1 � r�c�A�c�B�

r�c�A��1 � c�B�� � c�B��1 � c�A���
� �1 � r��c�A�c�B� � �1 � c�A���1 � c�B���.

(6)

The right-hand side of Equation 6 differs from the normative
model (Equation 1) in part because it includes the terms c(A)c(B)
and [1 � c(A)][1 � c(B)]. The former term represents the proba-
bility that A and B are both true, and the latter represents the
probability that A and B are both false. In Equation 6, we assign a
weight to these two terms that reflects the extent to which the
participant believes that those two possibilities still exist in spite of
what the experimenter has said. When r � .5, the terms are
included completely, and c(A,B) � c(A). When r � 1, the terms
are excluded, and it is easy to see that Equation 6 reduces to
Equation 1.

1 For the sake of exposition, we are assuming that the two likelihoods,
p(“MEE”|MEE) and p(“MEE”|�MEE), sum to 1, but we do not make this
assumption in the formulation of our models. In other words, in the
simplified text, we are assuming that the experimenter is unbiased when
claiming that the forced-choice items are or are not mutually exclusive and
exhaustive. To see that we are not limited by this assumption, however,
note that experimenter reliability can be represented by the likelihood ratio
(LR) in Bayes’s theorem, p(“MEE”|MEE)/p(“MEE”|�MEE). LR in the
current context is expected to be at least 1. We assume that the more
reliable the experimenter is perceived to be, the greater LR is. We can
rescale this value to range between 0.5 and 1: LR/(LR � 1). The resulting
value is r. Note that r/(1 � r) � LR. Thus, Equation 4 holds even for cases
in which the two likelihoods do not sum to 1, or in which the experimenter
has a bias for the saying that the items are (or are not) mutually exclusive
and exhaustive.
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Because Equations 5 and 6 are algebraically equivalent (see
Appendix B), the trust model can be represented by either one. In
Equation 6, c(A) and c(B) for a given pair define everything in the
equation needed to compute the predicted value of c(A,B) except
for r. That value must be estimated from a participant’s data. In the
experiments described in this article, the data from an individual
participant will involve many c(A), c(B), c(A,B) combinations (i.e.,
many cases in which the participant has supplied confidence in A
and B independently and in a subsequent forced-choice arrange-
ment). Equation 6 can be fit to such data by adjusting the value of
r to yield predicted values of c(A,B) that are as close as possible to
the observed values. This is a sensible thing to do because, theo-
retically, r is constant across all of the pairs under consideration.
To the extent that Equation 6 fits the data better than competing
models and that r varies in the expected way when degree of belief
changes with respect to the forced-choice items being mutually
exclusive and exhaustive, the more compelling the trust model
will be.2

The Relationship Between the Multiplicative and Trust
Models

The multiplicative and trust models are conceptually different.
The former is a descriptive account that implies that confidence in
nonfocal alternatives has less than optimal impact (relative to
Equation 1) for whatever reason. The latter implies that the sub-
optimal impact is specifically due to failure to believe fully that the
items are mutually exclusive and exhaustive. Despite the concep-
tual differences, the two models are nearly identical in their quan-
titative behavior. In particular, as our experiments show, the two
models result in virtually identical goodness-of-fit statistics.

Because of the quantitative similarity between the multiplicative
and trust models, the findings reported by McKenzie et al. (2001)
in support of the multiplicative model can also be taken to support
the trust model. That is, in terms of goodness of fit, the trust model
outperforms the normative model. Although they provide nearly
identical quantitative fits, the advantage of the trust model is that
it provides a specific reason why w in the multiplicative model was
less than 1. The multiplicative model is silent about that. The
question of interest is whether the explanation offered by the trust
model is not only specific but correct. If the trust model is correct,
then skepticism regarding the experimenter’s claim that the forced-
choice items are mutually exclusive and exhaustive should influ-
ence r in predictable ways.

Experiment 1

Our primary purpose in Experiment 1 was to examine the trust
model’s conceptual accuracy by asking participants, after the ex-
periment was completed, about their belief that the targets during
the forced-choice stage were mutually exclusive and exhaustive.
Support for the model’s conceptual accuracy would be found to the
extent that r is higher for those who did versus those who did not
believe that the targets were mutually exclusive and exhaustive.

In addition, Experiment 1 allowed for testing whether the per-
formance of the models using general-knowledge statements
(McKenzie et al., 2001) generalized to a different domain. To this
end, we used a visual identification task. At the yes–no stage,

participants were presented with letter–number pairs and reported
their confidence that a target letter and a target number appeared.
The targets were conditionally independent. At the forced-choice
stage, participants again reported confidence after being told (ac-
curately) that the targets were mutually exclusive and exhaustive.
Half of the participants were told to have their forced-choice
confidence in the targets sum to 100%, and half were not. We
expected that the most natural performance (and, hence, the best
test of the models) would occur when participants were free to
supply whatever confidence ratings they believed to be correct,
regardless of whether they summed to 100%. Nevertheless, half of
the participants were instructed to provide forced-choice confi-
dence ratings that summed to 100% to see whether that would
induce them to respond in more accordance with Equation 1,
which requires that responses sum to 100%.

Method

Participants were 107 University of California, San Diego students who
participated for course credit in undergraduate psychology courses. The
experiment took place on a computer. During the yes–no phase, 64 letter–
number pairs were presented sequentially. On each trial, one letter (B, E, or
R) and one number (5, 6, or 8) briefly appeared simultaneously side by
side, separated by about 2 cm on the computer monitor. The target letter B
occurred on half of the trials, and either E or R occurred on the other half.
Similarly, the target number 6 occurred on half of the trials, and either 5 or
8 occurred on the other half. The left side of Table 1 shows the frequency
of each letter–number pair comprising the 64 trials. After each trial,
participants reported two numbers on a scale of 0–100: One was their
confidence that B was present, and the other was their confidence that 6
was present. Zero corresponded to certainty that B (6) was absent, 50
corresponded to B (6) was equally likely present or absent, and 100
corresponded to certainty that B (6) was present. They were instructed to
expect that B (6) would be present X% of the time when they reported X%
confidence. They were discouraged from using 0, 50, and 100 except when
they were truly certain or truly guessing. Half of the participants reported
confidence in B first, and half reported confidence in 6 first. The letter
appeared on the right and the number on the left on half of the trials, and
the reverse was true for the other half. Letters and numbers were condi-
tionally independent. For example, B was present on 50% of the trials
regardless of whether 6 was present or absent.

Each trial began with a plus sign in the middle of the screen as a fixation
point for 1,000 ms. The screen was then blank for 500 ms, followed by a
letter–number pair. The pairs were present for about 30 ms on half of the
trials and for about 50 ms on the other half. There were two speeds of
presentation in order to get more variation in confidence reports. Immedi-
ately following the letter–number pair, a pound sign appeared in each of the
two positions as a mask and was present for 1,000 ms. After reporting

2 For the sake of completeness, it should be noted that in the algebra-
ically equivalent Equation 5, c(A) and c(B) for a given pair define every-
thing needed for computing predicted values of c(A,B) except for s (the
posterior probability that the alternatives are mutually exclusive and ex-
haustive). However, unlike r, s is not constant across pairs. Instead,
because it is a joint function of r and q (see Equation 4), s will differ for
every pair (just as q, the prior probability, does). For that reason, s should
not be thought of as a free parameter that can be estimated by adjusting its
value to find the best fit. To produce an equation that can be fit to data, s
in Equation 5 must be replaced by the right side of Equation 4 (this yields
Equation 6).
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confidence that each of B and 6 was present, participants pressed the space
bar to begin the next trial.

Before the 64 yes–no trials, there were 5 practice trials to familiarize
participants with the task. They were instructed to seat themselves com-
fortably about 60 cm from the monitor and to maintain that distance during
the entire task. The distance from the monitor, the spacing between the
letter and number on the monitor, and the two speeds of presentation were
chosen on the basis of pilot testing. The goal was to have a task in which
participants were neither entirely certain of the target stimuli’s presence
nor purely guessing.

At the forced-choice stage, it was emphasized that, on every trial, either
B or 6 would be present, but not both. Participants had to verbally
acknowledge to the experimenter that they understood this information
before beginning the forced-choice stage. Furthermore, half of the partic-
ipants were instructed to have their confidence in B and 6 sum to 100, and
half were not. Those who received such instructions had to verbally
acknowledge that they understood this information as well before begin-
ning. For this stage, only a subset of the pairs used in the yes–no stage was
presented. Specifically, the pairs in which both B and 6 appeared and those
in which neither B nor 6 appeared were eliminated, resulting in 32 trials
(see the middle column of Table 1). Everything else was the same.

At the end of the experiment, participants were asked whether, when
they were reporting confidence during the forced-choice stage, they had
believed the instructions that either B or 6, but not both, appeared on each

trial. Because simply asking the question might influence whether they
believed the information, it was emphasized that they were to report what
they had believed when they were reporting their forced-choice confidence.
They selected one statement from among three that best described their
belief: One statement claimed full belief that either B or 6 appeared on
every trial, one expressed some doubt, and one claimed not to believe the
information.

Results

Of the 107 participants, 2 were eliminated because they reported
50% confidence on every trial, and 7 were eliminated for reasons
given below in the Individual-level results section. As a manipu-
lation check, we compared the uninstructed and instructed partic-
ipants in terms of the extent to which their forced-choice confi-
dence reports were additive (i.e., summed to 100). We calculated
mean absolute deviation between 100 and summed confidence for
each of the 32 forced-choice pairs for each participant. Greater
means indicated greater nonadditivity (McKenzie, 1998; McKen-
zie et al., 2001). The uninstructed group’s responses were less
additive than those of the instructed group (Ms � 7.8 vs. 1.5)
t(96) � 4.61, p 	 .01. Thus, the groups differed as expected.

Group-level results. We obtained the predictions of each
model with a free parameter by fitting each model to the c(A,B)
and c(B,A) values by adjusting the parameter (r or w) until the sum
of squared deviations between the predicted and observed values
was minimized. We used a quasi-Newton method minimization
algorithm described by Fletcher (1972) to find the optimum value
of each model’s free parameter. Recall that the multiplicative and
trust models are quantitatively virtually identical, but we present
the variance accounted for in both cases just to reinforce that
assertion.

For the uninstructed group, both the trust and multiplicative
models accounted for 98.5% of the variance with best-fitting
parameters of 0.85 and 0.67, respectively. That the trust model’s r
parameter was less than 1 indicates that, at the group level,
uninstructed participants did not fully believe that the forced-
choice alternatives were mutually exclusive and exhaustive. We
expected r to fall between 0.5 and 1.0, but we did not constrain
either model’s parameter when fitting the models. The normative
model (Equation 1) also performed quite well, accounting for
96.9% of the variance. Recall that the trust model with r � 1 is
equivalent to the normative model (Equation 1). The trust model
with r � 0.85 accounted for significantly more variance than the
normative model, F(1, 15) � 16.9, p 	 .05.3 That is, adding a free
parameter accounted for a significantly greater percentage of the
data variance than would be expected by chance alone. The same
is true of the multiplicative model, of course (i.e., with w � 0.67,

3 We report statistical tests on differences in variance accounted for
between models at the group level only when one model is a more general
form of the other. (The trust and multiplicative models are both general
forms of Equation 1, the normative model.) We calculated F values by
subtracting the general model’s residual sum of squares (resulting from the
least squares fit to the group data) from the normative model’s residual sum
of squares and dividing the difference by the general model’s mean square
error. The degrees of freedom are equal to the number of observations
minus 1. These tests correct for differences in the number of free param-
eters between the models.

Table 1
Presentations of Letter–Number Pairs at Each Stage in
Experiments 1 and 2

Pair and speed Yes–no

Forced choice

Experiments 1 and 2
(high probability)

Experiment 2
(low probability)

B/5
Slow 4 4 4
Fast 4 4 4

B/8
Slow 4 4 4
Fast 4 4 4

E/6
Slow 4 4 4
Fast 4 4 4

R/6
Slow 4 4 4
Fast 4 4 4

B/6
Slow 8 0 2
Fast 8 0 2

E/5
Slow 2 0 0
Fast 2 0 1

E/8
Slow 2 0 1
Fast 2 0 0

R/5
Slow 2 0 1
Fast 2 0 0

R/8
Slow 2 0 0
Fast 2 0 1

Total 64 32 40

Note. For each letter–number pair with more than one presentation, the
letter appeared on the left and the number on the right on 50% of the trials,
and the reverse was true for the remaining 50%.
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it also significantly outperformed Equation 1). Thus, these results
replicate McKenzie et al.’s (2001) findings by showing that the
normative model, relative to these other more general models, does
not describe behavior as well.

A similar pattern of results occurred for the instructed group.
The trust and multiplicative models accounted for 99.4% of the
variance with respective best-fitting parameters of 0.84 and 0.64.
The normative model accounted for 97.3% of the variance, signif-
icantly less than the other two models ( ps 	 .05). Thus, the more
general models outperformed the normative model even when
confidence summed to (virtually) 100% for every forced-choice
pair.

Recall that the normative model assumes that yes–no confidence
in targets subsequently presented as forced-choice pairs is inde-
pendent. In this experiment, because yes–no confidence in the
target letter and in the target number was reported on the same
trial, it is conceivable that reported confidence in one would
influence reported confidence in the other. At the group level,
however, we found only a very small positive correlation of .05.
The mean individual-level correlation was .09 (the median was
.07), which is small but significantly different from 0 ( p 	 .05).

Individual-level results. We also fit the models at the individ-
ual level, resulting in a percentage of variance accounted for and
(except for the normative model) a best-fitting parameter value for
each model and participant. We eliminated 4 participants from the
uninstructed group and 3 from the instructed group because their
variance accounted for was negative for all models. (Negative
variance accounted for occurs when the use of the best-fitting
model results in greater error than the use of a constant—the
mean—to predict confidence. Our models have no constants.)

For the uninstructed group, the trust and multiplicative models
accounted for an average of 65.7% and 64.4% of the variance,
respectively. Their respective average best-fitting parameters were
0.85 and 0.82. The normative model accounted for 57.7% of the
variance on average. For the instructed group, variance accounted
for was 66.1% and 65.9% for the trust and multiplicative models,
and their respective parameters were 0.83 and 0.74. The normative
model explained 58.3% of the variance. Thus, conclusions based
on group-level analyses correspond to those based on individual-
level analyses.

Believers versus skeptics. Most important, at the end of the
experiment, participants were asked whether (a) they fully be-
lieved the information that the target items (B and 6) during the

forced-choice stage were mutually exclusive and exhaustive, (b)
there was some doubt in their minds, or (c) they did not believe the
information. For the uninstructed group, 30, 18, and 2 participants
responded with (a), (b), and (c), respectively. For the instructed
group, the corresponding numbers were 30, 15, and 3. Thus, about
60% of the participants reported fully believing the information
that the targets were mutually exclusive and exhaustive during the
forced-choice stage, and the additivity instructions had no effect,
�2(2, N � 98) � 0.43, p � .81. We categorized those participants
who reported (a) as believers and those participants who reported
either (b) or (c) as skeptics. The trust model implies that r should
be higher for believers than it is for skeptics. The individual-level
results are shown in Table 2. For the uninstructed group, rs were
0.94 and 0.80 for believers and skeptics, respectively, t(48) �
3.11, p 	 .01. (The w value for the multiplicative model was also
lower for the skeptics, p � .01.) For the instructed group, rs were
0.92 and 0.78, respectively, t(46) � 3.14, p 	 .01; the w parameter
was also significantly lower for skeptics ( p 	 .01). Note that, as
would be expected under the current account, the normative model
did a pretty good job of explaining variance in believers’ responses
but did less well (relative to the other models) for skeptics’
responses. Also of interest is that r, though high, was significantly
less than 1 for believers in both the uninstructed, t(29) � 2.36, p �
.03, and the instructed, t(29) � 2.65, p � .01, groups.

Discussion

The normative model (Equation 1) does not describe forced-
choice behavior well, but the trust model, a new normative model
that does not assume full belief that exactly one of the forced-
choice items is true, does. Although both the trust and multiplica-
tive models provided the best fit to the data, only the trust model
appears conceptually accurate. The fact that almost 40% of the
participants did not report full belief that the forced-choice items
were mutually exclusive and exhaustive, despite efforts to get them
to believe it (and that it was, in fact, true), is interesting and is itself
evidence in favor of the trust model. Also important was that r was
lower for those who reported disbelief that the forced-choice items
were mutually exclusive and exhaustive, a straightforward predic-
tion of the trust model. This was true for both the uninstructed and
the instructed groups. The suboptimal impact of confidence in
nonfocal alternatives during the forced-choice stage (relative to
Equation 1), reported by McKenzie et al. (2001) and replicated

Table 2
Experiment 1: Individual-Level Results for Believers and Skeptics in Both the Uninstructed and
Instructed Groups

Model

Uninstructed group Instructed group

Believers Skeptics Believers Skeptics

Parameter VAF Parameter VAF Parameter VAF Parameter VAF

Trust r � 0.94 65.4 r � 0.80 66.0 r � 0.92 73.6 r � 0.78 53.1
Multiplicative w � 0.96 65.2 w � 0.61 63.1 w � 0.89 73.5 w � 0.50 52.7
Normative 62.1 51.0 69.0 40.7

Note. VAF � percentage of variance accounted for.
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here, can be largely accounted for by the fact that some partici-
pants do not fully believe the experimenters’ claim that the alter-
natives are mutually exclusive and exhaustive.

However, r, though close to 1, was significantly less than 1 for
believers. Arguably, if skepticism that the forced-choice items are
mutually exclusive and exhaustive is the reason for participants’
failure to change confidence in accord with Equation 1, then those
participants who did believe the stipulation should have behaved
normatively—that is, r should have equaled 1 for them. If the trust
model is correct, the most likely explanation for r 	 1 for believers
is that they (or at least a subset of them) did not fully believe the
stipulation that the targets were mutually exclusive and exhaustive,
although they reported otherwise. Alternatively, random error in
participants’ confidence reports might decrease r. McKenzie et al.
(2001) reported simulation results showing that, even if the nor-
mative model (Equation 1) is correct (i.e., w � 1 in the multipli-
cative model), error in reported confidence will lower the multi-
plicative model’s w to some extent.4 A third possibility is that even
participants who fully believe that the targets are mutually exclu-
sive and exhaustive nonetheless underweight the strength of the
nonfocal alternative.

Experiment 2

With respect to establishing the validity of the trust model, a
shortcoming of Experiment 1 was that participants were sorted into
believers and skeptics on the basis of postexperimental responses.
Conceivably, participants who knew they were behaving appro-
priately (i.e., largely in accord with Equation 1) claimed to believe
the experimenter, whereas those who knew they were not claimed
to doubt the experimenter. If so, the participants’ degree of belief
in the experimenter’s reliability did not determine their perfor-
mance; instead, performance determined what they said about their
degree of belief. One way to test the trust model further would be
to use groups of participants expected to differ in terms of their
degree of skepticism (e.g., those who have vs. those who have not
been previously deceived in experiments). However, we thought it
best to conduct an experiment in which participants were randomly
assigned to conditions in order to avoid confounding variables. To
do so, we used a surrogate of experimenter reliability. Specifically,
some participants in Experiment 2 were told (accurately) that
100% of the forced-choice alternatives were mutually exclusive
and exhaustive (as in Experiment 1), whereas others were told
(accurately) that only 80% of the forced-choice alternatives were
mutually exclusive and exhaustive. Thus, we assume that (truth-
fully) manipulating the base rate of mutually exclusive and ex-
haustive items in the forced-choice task is tantamount to manipu-
lating experimenter reliability. We do not assume that participants
fully believe either assertion by the experimenter, but because
participants are randomly assigned, the degree of doubt, whatever
it might be, should be the same for both conditions. Nevertheless,
a participant in the 80% base rate condition (like a participant in
Experiment 1 who does not trust the experimenter) should have
greater doubt that the items are MEE than should a participant in
the 100% base rate condition (like a participant in Experiment 1
who trusts the experimenter). We are, in essence, manipulating
faith in the idea that the items are MEE rather than faith in the

experimenter per se. Still, r should be sensitive to this
manipulation.

Method

There were 103 participants from the same population used in Experi-
ment 1. The procedure was identical to that used in Experiment 1 except
that half of the participants (the low-probability group) were told (accu-
rately) at the forced-choice stage that either B or 6, but not both, would
appear on 80% of the trials. On the remaining 20% of the trials, either both
B and 6 would appear or neither B nor 6 would appear. The right side of
Table 1 shows that 8 additional pairs were used in this condition during the
forced-choice stage; 4 pairs included both B and 6, and 4 pairs included
neither. Thus, this group saw 40 pairs, and B and 6 were mutually exclusive
and exhaustive in 32 of them (80%). The high-probability group was told
(accurately), as in Experiment 1, that either B or 6, but not both, would
appear on all of the forced-choice trials. This group saw the 32 pairs listed
in the middle column of Table 1. Participants in both groups had to verbally
acknowledge to the experimenter that they understood the instructions
before they could begin the forced-choice stage. Unlike in Experiment 1,
no participants received additivity instructions.

Results

We eliminated 2 of the 103 participants (both in the high-
probability group) because they were unable to see the letters or
numbers, and 9 (4 high-probability and 5 low-probability) were
eliminated because all three models resulted in negative variance
accounted for. Data for the remaining 92 participants were
analyzed.

We first note that, as in Experiment 1, there was only a small
positive correlation (.07) between reported yes–no confidence in
letter and number targets subsequently presented as forced-choice
pairs at the group level. (Recall that the normative model assumes
that c[A] and c[B] are independent.) The mean individual-level
correlation was again small (0.08, equal to the median) but signif-
icantly different from 0 ( p 	 .05).

Group-level results. The left side of Table 3 shows the results
for the high-probability group (which is analogous to the unin-
structed group in Experiment 1). The trust and multiplicative

4 We conducted simulations to examine whether error in confidence
reports alone can account for r 	 1. We conducted them using c(A) and
c(B) values that were varied factorially between 0.1 and 0.9 in steps of 0.1.
For each of the resulting 81 c(A) and c(B) pairs, we calculated c(A,B) using
the trust model with r � 1. However, each c(A), c(B), and c(A,B) value was
disturbed by random error. In particular, rather than using the “true” value,
we drew a value from a beta distribution with the same mean value.
Enough error was introduced that fitting the trust model to the data for each
of 20 simulated participants accounted for about 65% of the variance on
average, which was the mean variance accounted for in Experiment 1 at the
individual level. The mean r value across simulated participants was
generally less than 1.0 (15 simulated participants had values less than 1.0,
and 5 had values greater than 1.0), but not by much. The estimated values
of r ranged from 0.94 to 1.03, with a mean of 0.98. Thus, these simulations
do not suggest that the somewhat lower values of r that we obtained in
Experiment 1 for self-reported believers were the result of error alone.
Nevertheless, it is conceivable that larger deviations from 1.0 could result
from error alone under other conditions, for example, modeling error with
something other than the beta distribution or using different distributions of
c(A) and c(B).
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models again performed well, accounting for 97.8% of the vari-
ance. These two models also performed well in the low-probability
condition, as shown on the right side of Table 3. (We fitted the
models using the same 32 trials for both probability groups.) The
trust and multiplicative models accounted for more variance than
did the normative model (Equation 1) in both conditions ( ps 	
.05)—that is, for both models, adding a free parameter accounted
for more variance than would be expected on the basis of chance
alone. Note that, as one would expect, the normative model per-
formed especially poorly in the low-probability condition (presum-
ably due, in large part, to the fact that it is not the normative model
when less than 100% of the forced-choice items are mutually
exclusive and exhaustive). It is important to note that the trust
model’s r parameter was much higher for the high-probability
group than it was for the low-probability group. As can be seen,
the multiplicative model’s w parameter was higher as well.

Individual-level results. Table 4 shows the mean results after
fitting the models to the data for each participant.5 All of the trends
from the group-level analyses are seen here as well. Both the
multiplicative and trust models outperformed the normative model,
but they were similar to each other in terms of goodness of fit.
Also, the normative model provided an especially poor fit in the
low-probability condition. Most important is that the trust model’s
r parameter was higher for the high-probability group than it was
for the low-probability group, t(90) � 3.32, p � .001. This was
also true for the multiplicative model’s w parameter ( p � .01).

Discussion

Manipulating the experimenter’s (accurate) assertion regarding
the objective probability that the forced-choice targets were mu-
tually exclusive and exhaustive affected the trust model’s r param-
eter as expected: Lowering the probability from 100% to 80% (i.e.,
lowering participants’ belief that the items are mutually exclusive
and exhaustive) lowered the parameter value. This finding rein-
forces our claim that the trust model not only provides a good fit
to the data but is conceptually accurate as well.

General Discussion

Deviations from the purported normative model prescribing
change in confidence between yes–no and forced-choice tasks
appear to be explained best by the fact that participants do not fully
believe a key task parameter, namely, that the forced-choice items
are mutually exclusive and exhaustive. The good fit provided by

the trust model (Equation 6), a new normative model that does not
assume full belief in the task parameter, indicates that participants
are largely responding optimally, given their degree of belief that
the forced-choice items are mutually exclusive and exhaustive.
The trust model’s only free parameter, r, which corresponds to the
perceived reliability of the experimenter when he or she is assert-
ing that the forced-choice items are mutually exclusive and ex-
haustive, was lower in Experiment 1 for participants who ex-
pressed some skepticism, rather than none, regarding the assertion.
It is not obvious how changes in the multiplicative model’s pa-
rameter could be explained. This suggests that the trust model is
not only quantitatively accurate but is conceptually accurate as
well. (The fact that 40% of participants in Experiment 1 expressed
at least some disbelief in the task parameter is interesting and
provides additional evidence for the trust model.) Experiment 2, in
which we used random assignment to conditions that differed
objectively in terms of the probability that the forced-choice op-
tions were mutually exclusive and exhaustive, showed that the
trust model continued to provide a good fit, and r again differed
between the groups as expected.

A limitation of our experiments is that we did not experimen-
tally manipulate the reliability of the experimenter (which is what
r theoretically captures). In Experiment 1, we divided participants
into believers and nonbelievers after the fact. The value of r
differed for these two groups in the expected way, and our model
would have been seriously challenged had that result not occurred,
but the lack of random assignment left open the possibility that
some other difference between the two groups was responsible for
the effect on r. In Experiment 2, we did use random assignment,
but we manipulated a surrogate of experimenter reliability. Again,
the value of r changed in the predicted direction, and had that not
happened, the trust model would not be viable. Although the
results of Experiments 1 and 2 are sufficient to drive home our
main point (namely, that it is a mistake to declare the behavior of
participants to be nonnormative without taking into account their
degree of belief in task parameters), an attempt to manipulate the
characteristics of the experimenter that influence perceived reli-
ability would be an important further test of our model.

5 One high-probability participant’s multiplicative w value was 25.1, and
this extreme outlier was eliminated from the analysis. In addition, one other
high-probability participant could not be fit by the multiplicative and
normative models because of division by zero, which occurs for these
models when c(A) and c(B) are both 0 or both 1.

Table 3
Experiment 2: Mean Results for the Group-Level Analyses

Model

High-probability
group

Low-probability
group

Parameter VAF Parameter VAF

Trust r � 0.76 97.8 r � 0.61 98.1
Multiplicative w � 0.49 97.8 w � 0.19 98.0
Normative 92.7 81.0

Note. VAF � percentage of variance accounted for.

Table 4
Experiment 2: Mean Results for the Individual-Level Analyses

Model

High-probability
group

Low-probability
group

Parameter VAF Parameter VAF

Trust r � 0.81 68.0 r � 0.68 66.9
Multiplicative w � 0.60 67.6 w � 0.39 65.6
Normative 52.4 41.5

Note. VAF � percentage of variance accounted for.
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The trust model is, of course, specific to tasks in which confi-
dence is expressed in alternatives whose degree of (in)dependence
has changed. However, deriving and testing the trust model is only
an example of a general approach that we believe has considerably
larger implications. The idea that participants may not fully believe
key task parameters is not one that is generally taken into consid-
eration in experiments designed to assess whether participants
behave in a normative manner. Often, researchers arrive at the
conclusion that participants do not behave normatively, just as
McKenzie et al. (2001) did. Not only does our proposed approach
make salient various assumptions experimenters might otherwise
take for granted, but it also highlights the fact that there are often
multiple normatively defensible responses to a given situation
(e.g., Birnbaum, 1983; Einhorn & Hogarth, 1981; Gigerenzer,
1991; Hilton, 1995; McKenzie, in press-a, in press-b; McKenzie &
Mikkelsen, in press; Oaksford & Chater, 1994; Schwarz, 1996;
Sher & McKenzie, 2003).

To illustrate how the approach could be applied to a different
area of research, consider again the base-rate studies discussed
earlier. Recall that Gigerenzer et al. (1988) found that increasing
the believability of the random sampling procedure led to re-
sponses that were much more normative. The following is a new
normative model of the Bayesian odds that a hypothesis (H) is true
given data (D), but that also takes into account the judge’s degree
of belief (r) that the data are randomly sampled from a population
with a certain base rate, p(H):

p�H�D�

p��H�D�
�

p�D�H��r�p�H�� � �1 � r��0.5��

p�D��H��r�1 � p�H�� � �1 � r��0.5��
,

where 0 � r � 1. When r � 1, the equation reduces to the odds
form of Bayes’s theorem, the traditional normative response.
When r � 0, uniform base rates are assumed (which is tantamount
to ignoring the presented base rates). This model is normative
under the assumption that the judge does not fully believe that the
data are randomly sampled and shows that underweighting base
rates can be rational if r 	 1. Such a model has the potential for
answering questions regarding whether participants are mak-
ing errors in Bayesian tasks or are responding reasonably, given
their (understandable) skepticism about the random sampling
stipulation.

It is not hard to find examples of claims about normative errors
relying on participants’ full belief in key task parameters. Another
example that, like the one above, regards verbal assertions about
sampling comes from Hamill, Wilson, and Nisbett (1980). These
authors showed participants a staged videotaped interview with a
prison guard who was either humane or inhumane. Some partici-
pants were told that the guard they saw was atypical, some were
told that the guard was typical, and some were told nothing about
typicality. They then answered questions about the characteristics
of prison guards in general. The main finding was that the asser-
tions about typicality had no effect. For example, if participants
had seen the humane guard, they reported that prison guards were
generally fair regardless of whether they were told that the guard
was typical or atypical. The researchers interpreted the lack of
effect as showing participants’ insensitivity to sample bias. The
interpretation, however, relied entirely on participants believing
the experimenters’ claim about typicality. It is possible that par-

ticipants simply did not believe the claim (which, of course, had to
be untrue for at least some of the participants).

We mention just one more example. Ross, Lepper, and Hubbard
(1975) presented participants with pairs of suicide notes, one of
which was said to be authentic and one of which was said to be
inauthentic. Participants were to judge which note was authentic
for a series of such pairs and, after each judgment, received
feedback. All participants received predetermined (i.e., false) feed-
back, indicating either that most of their judgments were correct or
that most were incorrect. During the initial debriefing, it was
explained to participants that they had been randomly assigned to
either a positive- or a negative-feedback condition, and that hence,
the feedback was independent of their performance. They were
then asked to provide judgments of how well they would do on an
additional series of trials. The main finding was that participants
given positive feedback predicted that they would do better than
did those given negative feedback. The authors argued that this
“belief perseverance” was normatively unjustified because the
initial basis for their perception of their ability had been “com-
pletely discredited” (p. 880). However, in this conclusion, the
authors assume that participants fully believed the experimenter
when told that their feedback was predetermined. Note the partic-
ipants’ quandary after being told they had been deceived (“Were
they lying to me then, or are they lying to me now?”), and any
skepticism about what the experimenter said about the false feed-
back leads to results that the authors consider irrational. One might
argue that participants should fully believe what they are told
during debriefing, and that therefore there should be no effect of
the initial feedback. Whatever the merits of this argument, we note
one more aspect of this experiment: The initial debriefing was also
part of the experiment, and participants were deceived then, too. It
was only during the final debriefing that participants were told the
true purpose of the experiment. Maybe the only irrational thing to
do in any experiment is to fully believe anything the experimenter
tells you.

In short, although we think it is a good idea to make important
task parameters believable, it is probably not reasonable to assume
that participants fully believe the parameters even under these
circumstances. In Experiment 1, we emphasized (accurately) to
participants that the forced-choice alternatives were mutually ex-
clusive and exhaustive, and they had to verbally acknowledge to
the experimenter that they understood this before performing the
task. Despite these efforts, almost 40% of the participants later
reported that they doubted that the forced-choice items were mu-
tually exclusive and exhaustive. We believe it is best to accept
participant skepticism as an important—and tractable—variable in
laboratory experiments, especially those that compare behavior to
a normative standard. The success of the trust model in the present
context shows that it is both desirable and feasible to develop
normative models in which it is not assumed that participants
believe key assumptions that are often taken for granted by
experimenters.
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Appendix A

Derivation of the Trust Model

In this appendix, we derive the trust model for combining confidence
judgments when there is some intermediate amount of trust in the claim
that the two alternatives at hand are mutually exclusive and exhaustive. The
trust model is first presented in Equation 5. Here we will show that this
model is normative given a quantified amount of uncertainty concerning
the claim that the two alternatives are mutually exclusive and exhaustive.

Let A be the event that the first of a given pair of possibilities is true, and
let B be the independent event that the second is true. Let X be the event
that A and B are mutually exclusive and exhaustive—that exactly one of the
two possibilities is true. Formally, we can write X as [(A ∧ B� ) ∨ (A� ∧ B)],
where the ∧ symbol is logical “and”, the ∨ symbol is logical “or”, and the
covering horizontal bar indicates logical negation. Let T be the event that
a teacher (e.g., the experimenter) indicates that A and B are mutually
exclusive and exhaustive—that X is true. Note that, due to lack of trust in
the teacher’s statement, T may be true while X is false, or X may just so
happen to be true of a given pair of options, even if the teacher did not
specifically dictate exclusiveness and exhaustiveness. Let P(�) be an ap-
propriate probability mass function over these events. Given this kind of
uncertainty, the normative expression of c(A,B) is P(A�T). This quantity
may be computed as follows:

P�A�T� � P�A ∧ T�/P�T� �
P�A ∧ T ∧ X� � P�A ∧ T ∧ �X)

P�T�

�
P�A�T ∧ X�P�X�T�P�T� � P�A�T ∧ �X)P� �X�T�P�T�

P�T�

� P�A�T ∧ X�P�X�T� � P�A�T ∧ �X)P� �X�T�.

At this point, we must make the assumption that A and T are independent
when conditioned on X. In other words, we must assume that the teacher’s
instructions provide no new information about the truth of A once we
already know whether X (the mutual exclusivity and exhaustiveness dic-
tate) is actually true. If we already know that exactly one of A and B is true,
the teacher’s proclamation of this fact changes nothing. This assumption
reduces the above expression to:

P�A�T� � P�A�X�P�X�T� � P�A� �X)P� �X�T�

� P�A�X�P�X�T� � P�A� �X)[1 � P�X�T��.

This equation contains a term, P(X�T), that expresses the trust assigned to
the teacher’s proclamation. This term is the degree of belief in the mutual
exclusivity and exhaustiveness dictate, given that the teacher provided it.
Note that this term is equivalent to the parameter s introduced in Equation
4. Substituting in s and manipulating this expression results in:

P�A�T� � sP�A�X� � �1 � s�P�A� �X)

�
sP�A�X�P� �X) � �1 � s�P�A� �X)P� �X)

P� �X)

�
sP�A�X�P� �X) � �1 � s�P�A� �X)P� �X)

P� �X)

�
�1 � s�P�A�X�P�X) � �1 � s�P�A�X)P�X)

P� �X)

�

P�A�X��sP� �X) � �1 � s�P�X��
� �1 � s��P�A�X�P�X� � P�A� �X)P� �X)]

P� �X)

�
P�A�X��s � sP�X� � P�X� � sP�X�� � �1 � s�P�A�

P� �X)

� P�A�X�� s � P�X�

1 � P�X�� � P�A�� 1 � s

1 � P�X��
� P�A�X�� s � P�X�

1 � P�X�� � P�A��1 � P�X� � �s � P�X��

1 � P�X� �
� P�A�X�� s � P�X�

1 � P�X�� � P�A��1 �
s � P�X�

1 � P�X�� .

Noting that P(X) is the same as the parameter q, introduced in Equation 3,
and defining the weighting parameter w to be equal to (s � q)/(1 � q) one
may write this expression in terms of w. Finally, by recognizing that P(A�X)
is the normative probability of A when mutual exclusivity and exhaustive-
ness is known with certainty—a probability that is calculated by the
normative model shown in Equation 1—one may rewrite this expression as:

P�A�T� � wP�A�X� � �1 � w�P�A�

� w
P�A��1 � P�B��

P�A��1 � P�B�� � P�B��1 � P�A��
� �1 � w�P�A�.

This expression for P(A�T) is entirely in terms of the priors on A and B,
along with the weighting parameter, w. It is equivalent to Equation 5,
demonstrating that this expression provides the Bayes optimal way to
combine estimates of the truth of A and B given a mutual exclusivity and
exhaustiveness proclamation that is trusted to some limited degree, quan-
tified by the parameter w.
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Appendix B

Reparameterizing the Trust Model

Although Equation 5 provides a normative method for updating beliefs
in the face of information concerning the mutual exclusivity and exhaus-
tiveness of two options, it has one major drawback: Its weighting param-
eter, w, is sensitive to the prior beliefs in A and B. We would prefer a
formulation of this model that includes a single free parameter that may be
seen as independent of the priors on A and B, capturing only information
about the general reliability of the teacher (e.g., the experimenter). Fortu-
nately, such a reparameterization of the trust model exists. It is derived
below, using the notation from Appendix A.

It is assumed that the judge retains information about the reliability of
the teacher in terms of two probabilities: a false-positive rate, P(T�X� ), and
a false-negative rate, P(T� �X) � 1 � P(T�X). These two probabilities are
combined into a single trust parameter, called r:

r �
P�T�X�

P�T�X� � P�T� �X)
.

In this appendix, we show how the trust model can be expressed in terms
of r.

Initially identifying a few simple relationships between the probabilities
of interest facilitates the reparameterization process. First, note that the
contributions to r of the false-positive rate and the false-negative rate are
symmetric:

P�T� �X)

P�T�X� � P�T� �X)
�

P�T�X� � P�T� �X) � P�T�X�

P�T�X� � P�T� �X)

� 1 �
P�T�X�

P�T�X� � P�T� �X)
� 1 � r. (B1)

Next, note that the denominator of the reparameterized trust model, shown
in Equation 6, has the following simplified form:

P�T�

P�T�X� � P�T� �X)
�

P�T�X�P�X� � P�T� �X)P� �X)

P�T�X� � P�T� �X)

� rP�X� � �1 � r�P� �X)

� r�P�A��1 � P�B�� � P�B��1 � P�A���

� �1 � r��P�A�P�B� � �1 � P�A���1 � P�B���. (B2)

One further relationship is worth noting before proceeding with the deri-
vation of the reparameterized trust model:

P�T� � P�T�X�

1 � P�X�
�

P�T�X�P�X� � P�T� �X)P� �X) � P�T�X�

1 � P�X�

�
P�T� �X)�1 � P�X�� � P�T�X��1 � P�X��

1 � P�X�

� P�T� �X) � P�T�X�. (B3)

With these three identities in hand, we can begin to algebraically manip-
ulate the original trust model (Equation 5):

P�A�T� � w
P�A��1 � P�B��

P�A��1 � P�B�� � P�B��1 � P�A��
� �1 � w�P�A�

� � s � q

1 � q��P�A��1 � P�B��

P�X� � � �1 �
s � q

1 � q�P�A�

� P�A�� s � q

1 � q��1 � P�B�

P�X� � � P�A�� 1 � s

1 � q��P�X�

P�X��
�

P�A�

P�X��1 � q� ��P�T�X�P�X�

P�T�
� P�X�� �1 � P�B��

� P�X��1 �
P�T�X�P�X�

P�T� ��
�

P�A�

1 � q ��P�T�X�

P�T�
� 1� �1 � P�B�� � �1 �

P�T�X�q

P�T� ��
�

P�A�

1 � q �P�T�X�

P�T�
�1 � P�B� � q� � P�B��

�
P�A�

1 � q �P�T�X�

P�T�
�1 � q� � P�B��1 �

P�T�X�

P�T� ��
�

P�A�

P�T��1 � q�
�P�T�X��1 � q� � P�B��P�T� � P�T�X���

�
P�A�

P�T� �P�T�X� � P�B�
P�T� � P�T�X�

1 � P�X� � .

We may now substitute in Equation B3, resulting in

P�A�T� �
P�A�

P�T�
�P�T�X� � P�B��P�T� �X) � P�T�X���

�
P�A�

P�T�
�P�T�X��1 � P�B�� � P�T� �X)P�B��

�
P�A�

P�T�/�P�T�X� � P�T� �X)] � P�T�X�

P�T�X� � P�T� �X)
�1 � P�B��

�
P�T� �X)

P�T�X� � P�T� �X)
P�B�� .

Substituting in the definition of r and the results of Equations B1 and B2
gives us

P�A�T� �
P�A��r�1 � P�B�� � �1 � r�P�B��

r�P�A��1 � P�B�� � P�B��1 � P�A���

� �1 � r��P�A�P�B� � �1 � P�A���1 � P�B���

�
rP�A��1 � P�B�� � �1 � r�P�A�P�B�

r�P�A��1 � P�B�� � P�B��1 � P�A���

� �1 � r��P�A�P�B� � �1 � P�A���1 � P�B���

.

This is the reparameterized trust model as it appears in Equation 6. This
equation is formally equivalent to the original trust model, though this
version is parameterized in terms of r, which does not vary with the priors
on A and B, given our assumptions.
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